ANALISIS POLA PEMINJAMAN BUKU PADA SISTEM PERPUSTAKAAN DIGITAL MENGGUNAKAN ALGORITMA FP-GROWTH DAN TEKNIK PRUNING

Main Article Content

Astari

Abstract

Manajemen perpustakaan menghadapi tantangan dalam pengelolaan data sirkulasi yang semakin kompleks akibat peningkatan literasi digital dan kebutuhan informasi yang terus berkembang. Penelitian ini bertujuan untuk menganalisis pola peminjaman buku di UPT Perpustakaan Universitas Latansa Mashiro dengan menerapkan algoritma Frequent Pattern Growth (FP-Growth) yang dioptimalkan melalui teknik pruning. Proses analisis dilakukan menggunakan perangkat lunak RapidMiner versi 9.10, dengan dataset terdiri dari 1.012 transaksi peminjaman buku selama periode Januari–Juni 2025. FP-Growth digunakan untuk mengekstraksi pola asosiasi antar itemset secara efisien tanpa proses pencarian kandidat, sedangkan pruning berfungsi untuk menghapus item dengan frekuensi rendah guna meningkatkan presisi hasil. Hasil eksperimen menunjukkan adanya korelasi kuat antara buku Manajemen dan Ekonomi (support 27%, confidence 54%, lift 956) yang meningkat menjadi (support 27%, confidence 64%, lift 1.233) setelah pruning diterapkan. Jumlah aturan asosiasi juga menurun dari 26 menjadi 8, namun dengan peningkatan kekuatan korelasi dan relevansi. Evaluasi visual dilakukan melalui perbandingan treemap dan confusion matrix-based validation untuk mengukur efektivitas aturan. Penelitian ini memiliki kontribusi baru dalam penerapan teknik pruning pada algoritma FP-Growth di konteks perpustakaan digital, yang masih jarang dieksplorasi dalam literatur. Temuan ini berimplikasi penting bagi pengambilan keputusan strategis dalam pengadaan koleksi, penataan layout rak, dan pengembangan sistem rekomendasi berbasis sirkulasi di lingkungan perpustakaan.

Article Details

Section

Articles

References

Aggarwal, C.C. (2015) Outlier Analysis. In: Data Mining, Springer, Cham, 237-263.

https://doi.org/10.1007/978-3-319-14142-8_8

Arabi, H., Balakrishnan, V., & Mohd Shuib, N. L. (2020). A Context-Aware Personalized Hybrid Book Recommender System. Journal of Web Engineering, 19(3-4), 405–428. https://doi.org/10.13052/jwe1540-9589.19343

Ashiq, M., Jabeen, F., & Mahmood, K. (2022). Transformation of libraries during Covid-19 pandemic: A systematic review. The Journal of Academic Librarianship, 48(4), 102534. https://doi.org/10.1016/j.acalib.2022.102534

Banu, A. R., Tresha, T. K., Chowdhury, S. S., & Srabonty, S. N. (2024). Online library interfaces: A user-centered study on design and functionality preferences of Gen-Z users. Journal of Creative Writing, 8(3), 40–57. https://doi.org/10.70771/jocw.130

Belkadi, W. H., Drias, Y., Drias, H., Dali, M., Hamdous, S., Kamel, N., & Aksa, D. (2023). A SCORPAN-based data warehouse for digital soil mapping and association rule mining in support of sustainable agriculture and climate change analysis in the Maghreb region. Expert Systems, 41(7), e13464. https://doi.org/10.1111/exsy.13464

Cecilio, J. D., Catedrilla, G. M. B., & A, J. R. (2023). Application of Apriori Algorithm in one state university’s library book borrower records for efficient library shelving. Journal of Software, 18(4), 172–184. https://doi.org/10.17706/jsw.18.4.172-184

Cen, C., Luo, G., Li, L., Liang, Y., Li, K., Jiang, T., & Xiong, Q. (2023). User-Centered Software Design: User Interface Redesign for Blockly–Electron, Artificial Intelligence Educational Software for Primary and Secondary Schools. Sustainability, 15(6), 5232. https://doi.org/10.3390/su15065232

Cui, Z. & Yan, C. (2020). Deep Integration of Health Information Service System and Data Mining Analysis Technology. Applied Mathematics and Nonlinear Sciences, 5(2), 2020. 443-452. https://doi.org/10.2478/amns.2020.2.00063

Dwiputra, D., Mulyo Widodo, A., Akbar, H., & Firmansyah, G. (2023). Evaluating the Performance of Association Rules in Apriori and FP-Growth Algorithms: Market Basket Analysis to Discover Rules of Item Combinations. Journal of World Science, 2(8), 1229–1248. https://doi.org/10.58344/jws.v2i8.403

Elbadawy, M., Sato, Y., Mori, T., Goto, Y., Hayashi, K., Yamanaka, M., Azakami, D., Uchide, T., Fukushima, R., Yoshida, T., Shibutani, M., Kobayashi, M., Shinohara, Y., Abugomaa, A., Kaneda, M., Yamawaki, H., Usui, T., & Sasaki, K. (2021). Anti-tumor effect of trametinib in bladder cancer organoid and the underlying mechanism. Cancer Biology & Therapy, 22(5–6), 357–371. https://doi.org/10.1080/15384047.2021.1919004

EShah, M. K., Gandrakota, N., Cimiotti, J. P., Ghose, N., Moore, M., & Ali, M. K. (2021). Prevalence of and factors associated with nurse burnout in the US. JAMA Network Open, 4(2), e2036469. https://doi.org/10.1001/jamanetworkopen.2020.36469

Fernandez-Basso, C., Ruiz, M.D. & Martin-Bautista, M.J. (2024). New Spark solutions for distributed frequent itemset and association rule mining algorithms. Cluster Comput 27, 1217–1234. https://doi.org/10.1007/s10586-023-04014-w

Gaftandzhieva, S., Hussain, S., Hilcenko, S., Doneva, R., & Boykova, K. (2023). Data-driven decision making in higher education institutions: State-of-play. International Journal of Advanced Computer Science and Applications, 14(6). https://doi.org/10.14569/IJACSA.2023.0140642

Gao, M., Knobelspiesse, K., Franz, B. A., Zhai, P.-W., Cairns, B., Xu, X., & Martins, J. V. (2023). The impact and estimation of uncertainty correlation for multi-angle polarimetric remote sensing of aerosols and ocean color. Atmospheric Measurement Techniques, 16(8), 2067–2087. https://doi.org/10.5194/amt-16-2067-2023

Geng, X., Wang, S., Zhang, Y., Liu, Q., & Huang, T. (2025). From algorithm to hardware: A survey on efficient and safe deployment of deep neural networks. IEEE Transactions on Neural Networks and Learning Systems, 36(4), 5837–5857. https://doi.org/10.1109/TNNLS.2024.3394494

Gray, R. (2021). Comment on Wang et al. (2021) “Effects of family participatory dignity therapy on the psychological well-being and family function of patients with hematological malignancies and their family caregivers: A randomized controlled trial.” International Journal of Nursing Studies, 120, 103945. https://doi.org/10.1016/j.ijnurstu.2021.103945

Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufmann.

Harisanty, D., Anna, N. E. V., Putri, T. E., Firdaus, A. A., & Noor Azizi, N. A. (2023). Is adopting artificial intelligence in libraries urgency or a buzzword? A systematic literature review. Journal of Information Science, 51(2), 511-522. https://doi.org/10.1177/01655515221141034

Hoerudin, C. W. (2025). The Utilization of Digital Repositories for Teaching and Learning Indonesian Literature: A Review of Library Resources. Forum for Linguistic Studies, 7(6), 925–940. https://doi.org/10.30564/fls.v7i6.8938

Hussain, W., Rasool, N., & Khan, Y. D. (2021). Insights into machine learning-based approaches for virtual screening in drug discovery: Existing strategies and streamlining through FP-CADD. Current Drug Discovery Technologies, 18(4), 463–472. https://doi.org/10.2174/1570163817666200806165934

Islam, N., Islam, K., & Islam, M. (2023). Exploring the Potential of Big Data Analytics in Improving Library Management in Indonesia: Challenges, Opportunities, and Best Practice. Internet Reference Services Quarterly, 27(2), 111–120. https://doi.org/10.1080/10875301.2023.2184900

Muhammad, R., Ahmad, K., Bin Naeem, S., & Jianming, Z. (2020). Budget harmonization and challenges: Understanding the competence of professionals in the budget process for structural and policy reforms in public libraries. Performance Measurement and Metrics, 21(2), 65–79. https://doi.org/10.1108/PMM-09-2019-0048

Permatasari, P. A., Qohar, A. A., & Rachman, A. F. (2020). From web 1.0 to web 4.0: the digital heritage platforms for UNESCO's heritage properties in Indonesia. Virtual Archeology Review, 11 (23), 75–93. https://doi.org/10.4995/var.2020.13121

Poline, V., Purohit, P. R., Bordet, P., Blanc, N., & Martinetto, P. (2024). Neural networks for rapid phase quantification of cultural heritage X-ray powder diffraction data. Journal of Applied Crystallography, 57(3), 831–841. https://doi.org/10.1107/S1600576724003704

Pratiwi, N. B. I., Indahwati, & Fitrianto, A. (2024). Village potential mapping: Comprehensive cluster analysis of continuous and categorical variables with missing values and outliers dataset in Bogor, West Java, Indonesia. Scientific Journal of Informatics, 11(2), 353–366. https://doi.org/10.15294/sji.v11i2.3903

Sarker, I.H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN COMPUT. SCI. 2, 160. https://doi.org/10.1007/s42979-021-00592-x

Singh, B., Gangwar, S., Sharma, M., & Devi, M. (2022). An Overview of Hybrid, Digital, and Virtual Library. World Journal of English Language, 12(3), p32. http://dx.doi.org/10.5430/wjel.v12n3p32

Singh, H., Saxena, S., Sharma, H. et al. (2025). An integrative TLBO-driven hybrid grey wolf optimizer for the efficient resolution of multi-dimensional, nonlinear engineering problems. Sci Rep 15, 11205. https://doi.org/10.1038/s41598-025-89458-3

Sunhare, P., Chowdhary, R. R., & Chattopadhyay, M. K. (2022). Internet of things and data mining: An application-oriented survey. Journal of King Saud University - Computer and Information Sciences, 34(6, Part B), 3569–3590. https://doi.org/10.1016/j.jksuci.2020.07.002

Tara, N., Rafi, M., & Ahmad, K. (2024). Evaluating the implementations of big data analytics in academic libraries: A structural equation model-based approach. Performance Measurement and Metrics, 25(3–4), 215–227. https://doi.org/10.1108/PMM-08-2023-0022

Wang, L., Zhang, L., Feng, L., Chen, T., & Qin, H. (2025). A novel deep transfer learning method based on explainable feature extraction and domain reconstruction. Neural Networks, 187, 107401. https://doi.org/10.1016/j.neunet.2025.107401