SISTEM PEMBERI PAKAN IKAN OTOMATIS BERBASIS INTERNET OF THINGS DENGAN WEMOS D1R1

Main Article Content

Selina Anindita
Christy Mahendra
Hadiyanto Hadiyanto

Abstract

Feeding carp manually results in disruption of fish growth so that fish yields are not optimal. If the feed is given too much then the rest of the fish feed will become a source of bacteria. Therefore, it is necessary to design an Internet of Things (IoT)-based carp feeder monitoring sistem that can work automatically based on the time and amount of fish feed that has been determined. In this study, the research method used is the waterfall method. The IoT-based automatic carp feeder monitoring sistem uses a Wemos D1 R1 microcontroller, RTC, LCD, servo motor, ultrasonic sensor, buzzer and Blynk. The results of this study are tools for monitoring automatic feeding at a predetermined time. Fish feed was given twice a day at 6:00 and 18:00 with feed weight 2% of the total fish biomass. Ultrasonic sensor accuracy in reading fish feed distance is 95.63%, accuracy in feeding fish is 90.47%, buzzer accuracy for warning if fish feed is running low is 100%. The amount of fish feed consumed for 3 weeks automatically was 152 grams and 107 grams manually. The difference in fish changes for manual feed is 10 grams and automatically is 15 grams.

 

Keywords: Wemos D1R1, IoT, Blynk

 

Abstrak

Pemberian pakan ikan gurame  secara manual  mengakibatkan terganggunya pertumbuhan ikan sehingga hasil panen ikan tidak maksimal. Jika pakan  diberikan terlalu banyak maka sisa pakan ikan akan menjadi sumber bakteri. Oleh karena itu perlu dirancang sistem monitoring alat pembemberi pakan ikan gurame berbasis Internet of Things (IoT) yang dapat bekerja secara otomatis berdasarkan waktu dan jumlah pakan ikan yang telah ditentukan. Pada penelitian ini, metode penelitian yang digunakan adalah metode Waterfall. Sistem monitoring alat pembemberi pakan ikan gurame secara otomatis berbasis IoT menggunakan mikrokontroller Wemos D1 R1, RTC, LCD, motor servo, sensor ultrasonik, buzzer dan Blynk. Hasil penelitian ini berupa alat untuk memonitoring pemberian pakan otomatis pada waktu yang telah ditentukan. Pemberian pakan ikan dilakukan 2 kali sehari yaitu pukul 6:00 dan 18:00 dengan berat pakan 2% dari total biomassa ikan. Akurasi sensor ultrasonik dalam membaca jarak pakan ikan sebesar 95,63%, akurasi dalam pemberian pakan ikan sebesar 90,47%, akurasi buzzer untuk peringatan jika pakan ikan hampir habis sebesar 100%. Jumlah pakan ikan yang dikonsumsi selama 3 minggu secara otomatis adalah 152 gram dan 107 gram secara manual. Selisih perubahan ikan untuk pakan manual sebesar 10 gram dan secara otomatis sebesar 15 gram.

Article Details

Section
Articles
Author Biographies

Christy Mahendra, STIKOM YOS SUDARSO

Ketua Jurusan Teknik Informatika

IIIB/Asisten Ahli

Hadiyanto Hadiyanto, Universitas Jambi

FKIP Universitas Jambi

IVA/Lektor Kepala 550

References

Ahmed, M. S. (2021). Designing of internet of things for real time sistem. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.03.527

Appiah, O., Quayson, E., & Opoku, E. (2020). Ultrasonic sensor based traffic information acquisition sistem; a cheaper alternative for ITS application in developing countries. In Scientific African (Vol. 9). Elsevier B.V. https://doi.org/10.1016/j.sciaf.2020.e00487

Balakrishna, K., Mohammed, F., Ullas, C. R., Hema, C. M., & Sonakshi, S. K. (2021). Application of IOT and machine learning in crop protection against animal intrusion. Global Transitions Proceedings, 2(2), 169–174. https://doi.org/10.1016/j.gltp.2021.08.061

Chang, V., & Martin, C. (2021). An industrial IoT sensor sistem for high-temperature measurement. Computers and Electrical Engineering, 95. https://doi.org/10.1016/j.compeleceng.2021.107439

Chawla, M. S., Prakash, D., & Jindal, S. (2021). Design of sistem for measuring air properties for help during COVID-19 scenario. Materials Today: Proceedings, 45, 4472–4476. https://doi.org/10.1016/j.matpr.2020.12.987

Choi, W., Kim, J., Lee, S. E., & Park, E. (2021). Smart home and internet of things: A bibliometic study. Journal of Cleaner Production, 301. https://doi.org/10.1016/j.jclepro.2021.126908

Gao, G., Xiao, K., & Chen, M. (2019). An intelligent IoT-based control and traceability sistem to forecast and maintain water quality in freshwater fish farms. Computers and Electronics in Agriculture, 166. https://doi.org/10.1016/j.compag.2019.105013

Hasrul, R., Akhmad Adnan, H., Dwi Bhaswara, A., Atha Atsir Rafid, M., Mukti Utomo Jalan Sambaliung No, R., Samarinda Ulu, K., Samarinda, K., & Timur, K. (2021). Rancang Bangun Prototipe WC Pintar Berbasis Wemos D1R1 Yang Terhubung Pada Android. Jurnal Sain, Energi, Teknologi & Industri), 5(2), 51–59.

Li, D., Wang, Z., Wu, S., Miao, Z., Du, L., & Duan, Y. (2020). Automatic recognition methods of fish feeding behavior in aquaculture: A review. In Aquaculture (Vol. 528). Elsevier B.V. https://doi.org/10.1016/j.aquaculture.2020.735508

Liu, Y., Wang, Z. Z., Wang, Y. F., Wang, D. H., & Xu, J. F. (2021). Cascade tracking control of servo motor with robust adaptive fuzzy compensation. Information Sciences, 569, 450–468. https://doi.org/10.1016/j.ins.2021.03.065

Omran, M. A., Hamza, B. J., & Saad, W. K. (2021). The design and fulfillment of a Smart Home (SH) material powered by the IoT using the Blynk app. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.08.038

Oyejide, O. J., Okwu, M. O., Tartibu, L. K., & Olayode, O. I. (2020). Development of Sensor Controlled Convertible Cart-Trolley. Procedia CIRP, 91, 71–79. https://doi.org/10.1016/j.procir.2020.03.097

Rigacci, M., Sato, R., & Shirase, K. (2021). Evaluating the influence of mechanical sistem vibration characteristics on servo motor efficiency. Precision Engineering, 72, 680–689. https://doi.org/10.1016/j.precisioneng.2021.07.012

Singh Gehlot, K., & Jain, D. (2020). Biometric finger print based voting machine using ATmega328P microcontroller. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.11.087

Trevathan, J., Schmidtke, S., Read, W., Sharp, T., & Sattar, A. (2021). An IoT General-Purpose Sensor Board for Enabling Remote Aquatic Environmental Monitoring. Internet of Things (Netherlands), 16. https://doi.org/10.1016/j.iot.2021.100429

Velázquez, M., & Martínez, F. J. (2005). Design and testing of a faeces-collecting device for fish digestibility studies using demand or automatic feeding. Aquacultural Engineering, 33(2), 126–134. https://doi.org/10.1016/j.aquaeng.2004.12.004

Yanes, A. R., Martinez, P., & Ahmad, R. (2020). Towards automated aquaponics: A review on monitoring, IoT, and smart sistems. In Journal of Cleaner Production (Vol. 263). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.121571

Zhang, L., Li, W., Liu, C., Zhou, X., & Duan, Q. (2020). Automatic fish counting method using image density grading and local regression. Computers and Electronics in Agriculture, 179. https://doi.org/10.1016/j.compag.2020.105844

Zhou, C., Lin, K., Xu, D., Chen, L., Guo, Q., Sun, C., & Yang, X. (2018). Near infrared computer vision and neuro-fuzzy model-based feeding decision sistem for fish in aquaculture. Computers and Electronics in Agriculture, 146, 114–124. https://doi.org/10.1016/j.compag.2018.02.006