UNJUK KERJA TURBIN CROSS-FLOW DENGAN SIMULASI CFD PADA NOSEL DAN MANUFAKTUR PADA RUNNER

Main Article Content

Steven Darmawan
Abrar Riza
M. Sobron Y. Lubis
Stevanus Aditya Winardi
Reuben Christianto

Abstract

Covid-19 pandemic has lead disruption in energy sector, new-and-renewable energy demand is increasing, which show that renewable energy is promisable to be developed.  As one of the hydraulic turbine, the cross-flow turbine is prospective primve mover in line with the 7th goal of the SDG’s Goals. Cross-flow turbine is radial atmospheric turbine which generates power by converting hydraulic energy from water to mechanical energy on the shaft by using nozzle and runner. The advantages make this device is became famous, including simple construction and geometry, low maintenance & cost and can be used at wide range operation scheme. However, the cross-flow turbine system is also known to have low efficiency. Based on this condition, this research is aims to improve the efficiency with design the nozzle and to manufacture the runner with two material. The operating condition is set to 1 phase water as working fluid with 1,4 L/s of flow. Nozzle design conducted with CFD 3D simulation from 3 different model. Runner manufacturing is conducted numerically with CAM simulation and experimentally by using CNC machining with Stainless Stell 304 and Aluminium 6061. CFD simulation on the nozzle shows that nozzle model 3 with total length of 400 mm, width 124 mm and throat radius 75 mm.resulting the maximum outlet velocity to the runner 0,135 m/s. Manufacturing of the runner and experiment on the system with nozzle model 3 show that the runner with SS 304 is able to generates larger power to 8,38 Watt,100% larger than the Aluminium 6061.

Keywords: Renewable Energy, Cross-flow turbine, CFD, CAM


Abstrak

Pandemi Covid-19 mengakibatkan disrupsi pada sektor energi, dimana konsumsi energi baru dan terbarukan mengalami kenaikan. Fenomena ini menunjukkan bahwa energi terbarukan menjanjikan untuk terus dikembangkan. Sesuai dengan goal ke-7 dari SDG’s oleh PBB, turbin cross-flow merupakan turbin radial yang menghasilkan daya melalui konversi energi hidrolik dari air sebagai sumber energi terbarukan, menjadi energi mekanis pada poros melalui penggunaan nosel dan runner, banyak digunakan karena beberapa kelebihannya, antara lain konstruksi yang sederhana dan simetris hanya memerlukan biaya perawatan yang rendah dan sederhana serta dapat digunakan pada rentang beban yang cukup besar. Namun demikian, turbin cross-flow secara umum memiliki nilai efisiensi yang lebih rendah. Efisiensi sistem dapat ditingkatkan dengan penggunaan material runner yang seusai. Penelitian ini bertujuan untuk melakukan perancangan terhadap nosel dan proses manufaktur runner cross-flow sehingga dapat diperoleh geometri nosel serta jenis material dan proses manufaktur runner yang sesuai untuk rentang operasi, yaitu aliran air 1 fasa dengan debit 1,4 L/s. Pengembangan nosel dilakukan dengan menggunakan metode CFD pada 3 model geometri. Pengembangan terhadap runner meliputi simulasi CAM dan manufaktur pada 2 jenis material, yaitu SS 304 dan Aluminium 6061. Hasil simulasi CFD 3D menunjukkan bahwa nosel model 3 dengan dimensi panjang total 400mm, lebar 124 mm, dan radius pada throat 75mm menghasilkan kecepatan pada sisi outlet sebesar 0,135 m/s. Hasil simulasi CAM dan Manufaktur terhadap runner serta eksperimen terhadap sistem dengan nosel model 3 menunjukkan bahwa bahwa runner dengan material SS 304 menghasilkan daya, yaitu 8.38 Watt, 100% lebih besar dibandingkan dengan runner dengan material Aluminium 6061.


Article Details

Section
Articles
Author Biography

Steven Darmawan, Universitas Tarumanagara

 

 

 

References

Acharya, N., Kim, C., Thapa, B., & Lee, Y. (2015). Numerical analysis and performance enhancement of a cross- fl ow hydro turbine *. Renewable Energy, 8–15. https://doi.org/10.1016/j.renene.2015.01.064

Aluminum - Advantages and Properties of Aluminum. (n.d.). Retrieved May 14, 2021, from https://www.azom.com/properties.aspx?ArticleID=1446

Chen, Z. M., & Choi, Y. D. (2013). Performance and internal flow characteristics of a cross-flow turbine by guide vane angle. IOP Conference Series: Materials Science and Engineering, 52(TOPIC 5). https://doi.org/10.1088/1757-899X/52/5/052031

Darmawan, S., Siswantara, A. I., Budiarso, Daryus, A., Gunawan, A. T., Wijayanto, A. B., & Tanujaya, H. (2015). Turbulent flow analysis in auxiliary cross-flow runner of a Proto X-3 Bioenergy micro gas turbine using RNG K-? turbulence model. ARPN Journal of Engineering and Applied Sciences, 10(16).

Darmawan, Steven. (2020). Reynolds number effects on swirling flows intensity and reattachment point over a backward-facing step geometry using STD k-? turbulence model. IOP Conference Series: Materials Science and Engineering, 852(1). https://doi.org/10.1088/1757-899X/852/1/012073

Executive Summary. (2020). World Energy Outlook 2020.

Kaunda Chiyembekezo S., Kimambo Cuthbert Z., N. K. (2014). A numerical investigation of flow profile and performance of a low cost Crossflow turbine. International Journal of Engry and Enviroment, 5(3), 275–296.

Kenvarg, A., Rosenberg, J., & Regulinski, J. (2013). Bike Wheels , Rotational Inertia , and Energy Which of These is Easier to Spin ?

Launder, B., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 270–289.

Lubis, M. S. Y., Siahaan, E., & Darmawan, S. (2019). Variation Of Cutting Parameters In The Process Of Turning AISI 4340 Steel On Surface Roughness. Sinergi. Sinergi, 23(2), 139–144.

Mockmore, C. A., & Merryfield, F. (1949). The Banki Water Turbine. Bulletin Series, 25. https://doi.org/10.7763/IJMMM.2013.V1.35

Munson, B. R., Young, D. F., Okiishi, T. H., & Huebsch, W. W. (2009). Fundamentals of Fluid Mechanics. John Wiley & Sons, Inc.

Ni, Z., Win, T., Htay, H., & Thein, M. (2016). Performance Test and Structural Analysis of Cross-Flow Turbine. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 26(4), 285–303.

Pereira, N. H. C., & Borges, J. E. (2014). Prediction of the Cross-Flow Turbine Efficiency with Experimental Verification. Journal of Hydraulic Engineering, 139(July), 04016035. https://doi.org/10.1061/(ASCE)HY

Riley, P. H. (2014). Affordability for sustainable energy development products. Applied Energy, 132, 308–316. https://doi.org/10.1016/j.apenergy.2014.06.050

Rossetti, A., Ardizzon, G., Santolin, A., Cavazzini, G., & Pavesi, G. (2011). Techno-economical method for the capacity sizing of a small hydropower plant. Energy Conversion and Management, 52(7), 2533–2541. https://doi.org/10.1016/j.enconman.2011.01.001

Sardjono, J. A., Darmawan, S., & Tanujaya, H. (2020). Flow investigation of cross-flow turbine using CFD method. IOP Conference Series: Materials Science and Engineering, 1007(1). https://doi.org/10.1088/1757-899X/1007/1/012035

Stainless Steel - Grade 304 (UNS S30400). (n.d.). Retrieved May 14, 2021, from https://www.azom.com/properties.aspx?ArticleID=965

UN. (2015). Sustainable Development Goals. 16301(October), 1–35.

World Energy Outlook 2020. (2020). October.

Yassen, S. R. (2014). Optimization of the Performance of Micro Hydro-Turbines for Electricity Generation Optimization of the Performance of Micro Hydro-Turbines for Electricity Generation.