Analisis Komparasi Metode Altman Z-Score – Financial Ratio dan Metode Beneish M-Score Model – Data Mining dalam Mendeteksi Fraudulent Financial Reporting

Fanny Magdalena, Hendang Tanusdjaja
| Abstract views: 647 | views: 610

Abstract

Abstract: The research tries to investigate which methods i.e. Altman Z Score – Financial Ratio or the method of Beneish M-Score Model – Data Mining, detect significantly to the Fraudulent Financial Reporting by comparing analysis on those methodologies. We argue those methods could detect the Fraudulent Financial Reporting significantly on the basis of the financial reporting in the go public companies. It is assumed that the financial reporting is formulated as good as possible before publish to the outsiders for taking another purpose of it. Thus, the research formulizes the comparison analysis on the methods for detecting the fraudulent financial reporting. Following this logic, we hypothesize that the higher the relationship to the indicator of ratios may affect to which method could more significantly in detecting positive relationship to the fraudulent financial reporting. Moreover, we test this hypothesis for the industry in consumer sector using data from IDX Database and run by PLS – SEM. Evidence strongly supports our hypothesis for detecting the fraudulent financial reporting by those methods, but the method of Altman Z Score – Financial Ratio is more influence in detecting the fraudulent financial reporting than the other.

Keywords: fraud, financial, Altman Z Score, financial ratio, Beneish M-Score, Data Mining.

Abstrak: Riset ini mencoba untuk menginvestigasi metode manakah diantara, Altman Z Score – Financial Ratio and metode Beneish M-Score Model – Data Mining, yang mendeteksi secara signifikan terhadap Fraudulent Financial Reporting dengan menggunakan analisis komparasi diantara metodologi yang diatas. Kami berargumentasi bahwa kedua metode tersebut dapat digunakan untuk mendekteksi Fraudulent Financial Reporting pada perusahan terbuka. Hal tersebut diasumsikan bahwa laporan keuangan dibuat sedemikian rupa sebelum dipublikasikan kepada pihak luar dalam rangka penggunaan untuk tujuan tertentu. Oleh karena itu, riset ini memformulasikan sebuah analisis komparasi metode untuk mendeteksi fraudulent financial reporting. Secara logika, penelitian ini menunjukkan suatu hipotesis dimana semakin tinggi hubungan antara metode dengan indikator rasio, maka metode tersebut semakin signifikan dalam mendektesi secara positif terhadap fraudulent financial reporting. Oleh karena itu, kami melakukan uji hipotesis ini pada industri sektor barang konsumsi dengan menggunakan data dari IDX dan dijalankan dengan PLS – SEM. Hasil uji telah membuktikan bahwa hipotesis di atas dapat mendeteksi fraudulent financial reporting, akan tetapi metode Altman Z Score – Financial Ratio  lebih berpengaruh dalam mendeteksi fraudulent financial reporting daripada metode Beneish M-Score Model.

Kata kunci: kecurangan, keuangan, Altman Z Score, rasio keuangan, Beneish M-Score, data mining

Keywords

Kecurangan; Keuangan; Altman Z Score; Rasio Keuangan; Beneish M-Score; Data Mining

Full Text:

PDF

References

ABDULLAHI, R. and MANSOR, N. (2015). Fraud Triangle Theory and Fraud Diamond Theory. Understanding the Convergent and Divergent For Future Research. International Journal of Academic Research in Accounting, Finance and Management Sciences, 5(4).

Aldama, r. (2017). Fraud Tree, Perkembangan Teori Penyebab Fraud dan 5 Komponen dari COSO Framework. Rezaaditaaldama.blogspot.co.id. Retrieved 16 August 2017, from https://rezaaditaaldama.blogspot.co.id/2016/11/perkembangan-teori-penyebab-fraud-dan-5.html

Ali, Y., Ali, Y. and lengkapku, L. (2016). PELUANG TERJADINYA FRAUD AKIBAT MORAL HAZARD. [online] Yusronaliblogaddress.blogspot.co.id. Available at: http://yusronaliblogaddress.blogspot.co.id/2015/07/peluang-terjadinya-fraud-akibat-moral_49.html

American Institute of Certified Public Accountants (AICPA). 2012. Consideration of Fraud in a Financial Statement Audit, Statement on Auditing Standard No. 99. New York. AICPA.

Arens, A., Elder, R., & Beasley, M. (2011). Auditing and Assurance Services (14th ed.). Prentice Hall.

Aritonang, L. (2007). Riset Pemasaran. 1st ed. Jakarta: Ghalia Indonesia.

Aris, N. A., Mohd Arif, S. M., Othman, R., & Zain, M. M. (2015). Fraudulent financial statement detection using statistical techniques: The case of small medium automotive enterprise. Journal of Applied Business Research, 31(4), 1469. Retrieved from https://search.proquest.com/docview/1699068131?accountid=45753

Assagaf, m. (2017). Creative accounting. Mohammad Fadly Assagaf. Retrieved 30 June 2017, from https://mohammadfadlyassagaf.wordpress.com/2017/04/19/creative-accounting/

Association of Certified Fraud Examiner. (2017). Report to The Nations on Occupational Fraud and Abuse. Retrieved from http://www.acfe.com/rttn2016/docs/2016-report-to-the-nations.pdf

Beneish, Messod D., 1999. The Detection of Earnings Manipulation, Financial Analysts Journal, September/October, pp. 24-36.

Beneish, Messod D., 2012. Fraud Detection and Expected Return, http://papers.ssrn.com/sol3/papers.cfm? abstract_id=1998387

"Buku Lepas." Jonathansarwono.Info, 2018, http://www.jonathansarwono.info/korelasi/korelasi.htm

Christie, A. (1990). Aggregation of test statistics: An evaluation of the evidence on contracting and size hypotheses. Journal of Accounting and Economics, 12, 15-36.

Dalnial, H., Kamaluddin, A., Sanusi, Z. and Khairuddin, K. (2016). Accountability in Financial Reporting: Detecting Fraudulent Firms.

DiNapoli, Thomas P. 2010. Red Flags for Fraud. New York. State of New York Office of the State Comptroller, pp 1 – 14.

DMK, M., & lengkapku, L. (2017). Pengertian, Definisi Dan Fungsi Data Mining | Info Dan Pengertian. Globallavebookx.blogspot.co.id. Retrieved 19 March 2017, from http://globallavebookx.blogspot.co.id/2015/01/pengertian-definisi-dan-fungsi-data.html

Fraud Tree. (2017). Acfe.com. Retrieved 16 August 2017, from http://www.acfe.com/fraud-tree.aspx

Han, J., & Kamber, M. (2006). Data mining. Amsterdam: Elsevier.

Hoffer, J., PRESCOTT, M., & McFadden, F. Modern database management. Upper Saddle River: Prentice Hall.

Journal of Accountancy. (2016). Auditors’ New Procedures for Detecting Fraud. [online] Available at: http://www.journalofaccountancy.com/issues/2002/may/auditorsnewproceduresfordetectingfraud.html

Kanapickienė, R. and Grundienė, Ž. (2016). The Model of Fraud Detection in Financial Statements by Means of Financial Ratios.

Kreutzfeldt, R. and Wallace, W. (1986). Error characteristics in audit populations: Their profile and relationship to environment factors. A Journal of Practice and Theory, 5, 20-43.

Langkah Umum Principal Component Analysis. (2017). Tyang Luhtu. Retrieved 2 June 2017, from https://tyangluhtu.wordpress.com/2013/04/19/langkah-umum-principal-component-analysis/

Mencintamu.., M. (2017). Audit Kecurangan. Kuliah Akuntansi. Retrieved 16 August 2017, from https://dwiermayanti.wordpress.com/2010/03/22/audit-kecurangan/

Mohamed, N. and Handley-Schachelor, M. (2016). Financial Statement Fraud Risk Mechanisms and Strategies: The Case Studies of Malaysian Commercial Companies

Mohamed, N. and Handley-Schachler, M. (2016). Roots of Responsibilities to Financial Statement Fraud Control.

Muslich, Mohamad. 2000. Manajemen Keuangan Modern (Analisis, Perencanaan, dan Kebijaksanaan). Jakarta: Bumi Aksara.

My journey to fraud awareness. (2017). Acfe.com. Retrieved 30 June 2017, from https://www.acfe.com/article.aspx?id=4294977890

Nia, S. H. (2015). Financial ratios between fraudulent and non-fraudulent firms: Evidence from tehran stock exchange. Journal of Accounting and Taxation, 7(3), 38-44. doi:http://dx.doi.org/10.5897/JAT2014.0166

Noor, N., Sanusia, Z., Heang, L., Iskandar, T. and Isa, Y. (2016). Fraud Motives and Opportunities Factors on Earnings Manipulations.

OJK, D., OJK, D., Keamanan, M., Jonan Jamin Harga BBM, d., & baik, S. (2017). Direksi PT Cakra Mineral Tbk Dilaporkan ke BEI dan OJK. Beritalima. Retrieved 24 June 2017, from https://www.beritalima.com/2016/12/16/direksi-pt-cakra-mineral-tbk-dilaporkan-bei-dan-ojk-2/

Online, M. (2017). PT Timah Diduga Buat Laporan Keuangan Fiktif. Tambang.co.id. Retrieved 24 June 2017, from https://www.tambang.co.id/pt-timah-diduga-membuat-laporan-keuangan-fiktif-9640/

Pasaribu, m., pasaribu, m., & profile, V. (2017). Pengertian dan Prinsip Fraudulent Financial Reporting. Pengertiandanartikel.blogspot.co.id. Retrieved 16 August 2017, from http://pengertiandanartikel.blogspot.co.id/2017/03/pengertian-dan-prinsip-fraudulent.html

Rahman, R. and Anwar, I. (2016). Effectiveness of Fraud Prevention and Detection Techniques in Malaysian Islamic Banks.

Roxas, M. L. (2011). Financial statement fraud detection using ratio and digital analysis. Journal of Leadership, Accountability and Ethics, 8(4), 56-66. Retrieved from https://search.proquest.com/docview/909953374?accountid=45753

Riduwan. 2005. Belajar Mudah Penelitian Untuk Guru, Karyawan dan Peneliti Pemula, Bandung : Alfabeta

Sarwono, J., & Narimawati, U. (2015). Membuat Skripsi, Tesis, dan Disertasi dengan Partial Least Square SEM (PLS-SEM) (1st ed.). Yogyakarta: CV Andi Offset.

Sciencedirect.com. (2016). The Role and Responsibility of Auditors in Prevention and Detection of Fraudulent Financial Reporting. [online] Available at: http://www.sciencedirect.com/science/article/pii/S221256711630291X

Sekaran, U. and Bougie, R. (2013). Research Methods for Business: A Skill-Building Approach. 6th ed.

Singleton, T., & Singleton, A. (2010). Fraud Auditing and Forensic Accounting, 4th Edition. John Wiley & Sons.

Skandal Manipulasi Laporan Keuangan PT. Kimia Farma Tbk.. (2017). Davidparsaoran's Blog. Retrieved 24 June 2017, from https://davidparsaoran.wordpress.com/2009/11/04/skandal-manipulasi-laporan-keuangan-pt-kimia-farma-tbk/

Tarjo, and Herawati, N. (2016). Application of Beneish M-Score Models and Data Mining to Detect Financial Fraud.

Teorionline.wordpress.com. (2016). sampel populasi penelitian teknik sampling | TEORI-ONLINE. [online] Available at: https://teorionline.wordpress.com/tag/sampel-populasi-penelitian-teknik-sampling/.

Teori Keagenan (Agency Theory). (2017). Randhy Ichsan. Retrieved 24 June 2017, from https://bungrandhy.wordpress.com/2013/01/12/teori-keagenan-agency-theory/

The Committee of Sponsoring Organizations of the Treadway Commission (COSO). Fraudulent Financial Reporting : 1987 – 1997, An Analysis of U.S. Public Company. 1999.

Toshiba Corporation Accounting Scandal. (2017). Suminar. Retrieved 24 June 2017, from https://minarahayu.wordpress.com/2016/05/08/toshiba-corporation-accounting-scandal/

Tuanakotta, Theodorus M. 2013. Mendeteksi Manipulasi Laporan Keuangan. Jakarta. Salemba Empat.

Turban, Aronson, & Liang, 2005, Decision Support Systems and Intelligent Systems, 7th Edition, Prentice Hall, New Jersey.

www.coso.org. “Report of the National Commission on Fraudulent Financial Reporting.” The Committee of Sponsoring Organizations of the Treadway Commission.

Copyright (c) 2018 Jurnal Muara Ilmu Ekonomi dan Bisnis

Refbacks

  • There are currently no refbacks.