Size dependency of CdSe for light harvesting in quantum dots solar cell using COMSOL Multiphysics

Main Article Content

Mirza Basyir Rodhuan
Rosmila Abdul-Kahar
Hajar Najihah Mohd Yazid
Amirah Nabilah Mohd Rapi
Nur Hidayu Baharin
Nanang Burhan

Abstract

A solar cell (SC) can increase its performance by applying a semiconductor nanoparticle into it, and the name became quantum dots solar cell (QDSC). A nanotube of titanium dioxide (TiO2) with various sizes of cadmium selenide (CdSe) quantum dots (QDs) was designed and simulated using COMSOL Multiphysics. This study is to identify the size of CdSe QDs that can harvest more light energy at 550 nm of wavelength through electric field distribution simulation. Following the result for CdSe QD that harvested highest at 550 nm of diameter size 3.0 nm, which matched the result of previous research, further study was done to look at the absorption percentage of this size. With the different structures of amorphous silicon SC, the maximum absorption value was 50.664% at 657 nm of wavelength and will increase to 52.819 % at 617 nm of wavelength when the 3 nm diameter size of CdSe is inserted. The presence of a certain size CdSe within an SC structure does improved the performance of SC.

Article Details

Section
Articles

References

P. Tighineanu, “Electric and magnetic interaction between quantum dots and light,” Ph.D. thesis, University of Copenhagen, 2015.

A. Delgado, M. Korkusinski, & P. Hawrylak, Solid State Commun. 305, 113752 (2020).

T. K. Nideep, M. Ramya, and M. Kailasnath, Superlattices Microstruct. 130, 175–181 (2019).

S. Sun, L. Gao, Y. Liu, and J. Sun, Appl. Phys. Letters 98, 093112 (2011).

O. J. Woodford, “Photostability and the BOPHY architecture,” Ph.D. thesis, Newcastle University, 2018.

A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. Kamat, J. Am. Chem. Soc. 130, 4007–4015 (2008).

T. M. W. J. Bandara, and J. L. Ratnasekera, “Polymer Electrolytes for Quantum Dot‐Sensitized Solar Cells (QDSSCs) and Challenges,” in Polymer Electrolytes: Characterization Techniques and Energy Applications, edited by T. Winie, A. K. Arof, and S. Thomas (Wiley-VCH, Weinheim, 2020), pp. 299–337.

K. Surana, R. M. Mehra, and B. Bhattacharya, Mater. Today: Proc. 5, 9108–9113 (2018).

P. Venkatachalam, and S. Rajalakshmi, Mater. Today: Proc. 22, 400-403 (2019).

L. Hu, X. Geng, S. Singh, J. Shi, Y. Hu, S. Li, X. Guan, T. He, X. Li, Z. Cheng, R. Patterson, S. Huang, and T. Wu, Nano Energy 64, 103922 (2019).

M. Xing, Y. Zhang, Q. Shen, and R. Wang, J. Sol. Energy 195, 1–5 (2020).

K. Jasim, KnE eng. 3, 171 (2018).

M. A. Hegazy and E. Borham, NRIAG J. Astron. Geophys. 7, 27–33 (2018).

W. K. Cartar, “Theory and Modelling of Light-Matter Interactions in Photonics Crystal Cavity Systems Coupled to Quantum Dot Ensembles,” Ph.D. thesis, Queen’s University, 2017.

I. Richter, P. Kwiecien, and J. Ctyroky, “Advanced photonic and plasmonic waveguide nanostructures analysed with Fourier modal methods,” in 2013 15th International Conference on Transparent Optical Networks (Institute of Electronic and Electronics Engineers, Spain, 2013), pp. 1–7.

Y. Hong, Y. Wu, S. Wu, X. Wang, and J. Zhang, Isr. J. Chem. 59, 661–672 (2019).

S. Zhai, P. Guo, J. Zheng, B. Suo, and Y. Wan, Comput. Mater. Sci. 148, 149–156 (2018).

Z. Zhu, J. Sun, Z. Li, X. Yu, J. Zhao, and H. Dai, Optik 179, 831–836 (2019).

F. Cheng, P. H. Su, J. Choi, S. Gwo, X. Li, and C. K. Shih, ACS Nano 10, 9852–9860, (2016).

V. Giannini, X. Lu, N. P. Hylton, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Solar cells with a multi-functional plasmonic light concentration layer,” in 37th IEEE Photo-voltaic Specialists Conference (IEEE, 2011), pp. 000864–000865.

O. Lehtikangas, T. Tarvainen, A. D. Kim, and S. R. Arridge, J. Comput. Phys. 282, 345–359 (2015).

M. H. Muhammad, M. F. O. Hameed, and S. S. A. Obayya, “Absorption Enhancement in Hexagonal Plasmonic Solar Cell,” in Numerical Simulation of Optoelectronic Devices (Institute of Electronic and Electronics Engineers, Spain, 2014), pp. 63–64.

M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, Chem. Soc. Rev. 35, 1084–1094 (2016).

A. Shah, “Thin-Film Silicon Solar Cells,” in McEvoy’s Handbook of Photovoltaics (EPFL Press, Lausanne, 2018), pp. 235–307.

T. N. Truong, D. Yan, C. Samundsett, R. Basnet, M. Tebyetekerwa, L. Li, F. Kremer, A. Cuevas, D. Macdonald, and H. T. Nguyen, ACS Appl. Mater. Interfaces 11, 5554–5560 (2019).

S. Prasad, H. S. AlHesseny, M. S. AlSalhi, D. Devaraj, and V. Masilamai, Nanomaterials 7, 29 (2017).

B. M. Saidzhonov, V. F. Kozlovsky, V. B. Zaytsev, and R. B. Vasiliev, J. Lumin. 209, 170–178 (2019).

K. Surana, R. M. Mehra, and B. Bhattacharya, Mater. Today 5, 9108–9113 (2018).