THE EFFECT OF FASTING BLOOD GLUCOSE LEVELS ON LIPID PROFILES
Main Article Content
Abstract
Metabolic diseases have become a common health problem faced by many people in Indonesia. Two important indicators for monitoring the onset of metabolic diseases are blood glucose and blood lipids. Blood glucose has a strong physiological relationship with lipid metabolism, including triglycerides, total cholesterol, LDL, and HDL. Excess blood glucose that is not utilized by the cells is converted into fatty acids through the process of lipogenesis in the liver, which are then stored as triglycerides, leading to elevated blood lipid levels that may contribute to the development of metabolic diseases. One private clinical laboratory in Tangerang City has received numerous test requests related to blood glucose and blood lipids. However, no analysis has been conducted to date, highlighting the need for a research study. This study employed a cross-sectional design and analyzed a total of 322 samples that met the inclusion criteria. The results showed a significant association between fasting blood glucose levels and triglyceride levels (p-value = 0.0001, PRR = 2.93), as well as HDL levels (p-value = 0.01, PRR = 1.469). However, no significant relationship was found between fasting blood glucose and total cholesterol (p-value = 0.209, PRR = 1.710) or LDL levels (p-value = 0.977, PRR = 0.993). These findings emphasize the importance of controlling blood glucose levels to prevent lipid metabolism disorders, even though not all lipid profile components showed a similar association.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Naskah yang diterima adalah naskah asli yang belum pernah dimuat dalam jurnal lain dan tidak sedang dalam proses untuk dimuat dalam majalah lain dalam waktu yang bersamaan. Naskah yang diterbitkan merupakan hak milik penerbit dan tidak akan dikembalikan, sedangkan naskah yang dinilai tidak layak diterbitkan akan dikembalikan. Naskah yang masuk akan dinilai oleh mitra bestari. Tim editor mempunyai hak melakukan pengeditan sesuai gaya selingkung untuk naskah yang akan diterbitkan.
References
1. American Diabetes Association (ADA). Diagnosis and classification of diabetes mellitus. Diabetes care, 2012;35 Suppl 1:S64–S71. https://doi.org/10.2337/dc12-s064
2. World Health Organization (WHO). Diabetes. Geneva: World Health Organization; 2024. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
3. Berihu, G., Mitiku, M., Asfaw Beyene, S., Gebregziabher, L., Gebregiorgis, Y., Eyasu, M., Teferi, M., Wellay, T., Tewele, A., & Tesfay Atsbeha, M. A facility-based study of lipids, glucose levels and their correlates among pregnant women in public hospitals of northern Ethiopia. PloS one, 2023; 18(6):e0279595. https://doi.org/10.1371/journal.pone.0279595
4. Wu, L., & Parhofer, K. G. Diabetic dyslipidemia. Metabolism: clinical and experimental. 2014;63(12):1469–1479. https://doi.org/10.1016/j.metabol.2014.08.010
5. Yang, C., Liu, Z., Zhang, L., & Gao, J. The association between blood glucose levels and lipids in the general adult population: results from NHANES (2005–2016). J Health Popul Nutr. 2024;43, 163. https://doi.org/10.1186/s41043-024-00660-x
6. Chen, L., Chen, X. W., Huang, X., Song, B. L., Wang, Y., & Wang, Y. Regulation of glucose and lipid metabolism in health and disease. Science China Life sciences. 2019;62(11):1420–1458. https://doi.org/10.1007/s11427-019-1563-3
7. Parhofer K. G. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia. Diabetes & metabolism journal. 2015;39(5):353–362. https://doi.org/10.4093/dmj.2015.39.5.353
8. Lam, T. K., Gutierrez-Juarez, R., Pocai, A., Bhanot, S., Tso, P., Schwartz, G. J., & Rossetti, L. Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins. Nature medicine. 2007;13(2):171–180. https://doi.org/10.1038/nm1540
9. Ramatchandirin, B., Pearah, A., & He, L. Regulation of Liver Glucose and Lipid Metabolism by Transcriptional Factors and Coactivators. Life. 2023;13(2):515. https://doi.org/10.3390/life13020515
10. Scherer, T., Lindtner, C., O'Hare, J., Hackl, M., Zielinski, E., Freudenthaler, A., Baumgartner-Parzer, S., Tödter, K., Heeren, J., Krššák, M., Scheja, L., Fürnsinn, C., & Buettner, C. Insulin Regulates Hepatic Triglyceride Secretion and Lipid Content via Signaling in the Brain. Diabetes. 2016;65(6):1511–1520. https://doi.org/10.2337/db15-1552
11. Bahiru, E., Hsiao, R., Phillipson, D., & Watson, K. E. Mechanisms and Treatment of Dyslipidemia in Diabetes. Current cardiology reports.2021;23(4):26. https://doi.org/10.1007/s11886-021-01455-w
12. Kane, J. P., Pullinger, C. R., Goldfine, I. D., & Malloy, M. J. Dyslipidemia and diabetes mellitus: Role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus. Current opinion in pharmacology. 2021;61:21–27. https://doi.org/10.1016/j.coph.2021.08.013
13. Kaze, A. D., Santhanam, P., Musani, S. K., Ahima, R., & Echouffo-Tcheugui, J. B. Metabolic Dyslipidemia and Cardiovascular Outcomes in Type 2 Diabetes Mellitus: Findings From the Look AHEAD Study. Journal of the American Heart Association. 2021;10(7):e016947. https://doi.org/10.1161/JAHA.120.016947
14. Alvarez-Jimenez, L., Morales-Palomo, F., Moreno-Cabañas, A., Ortega, J. F., & Mora-Rodríguez, R. Effects of statin therapy on glycemic control and insulin resistance: A systematic review and meta-analysis. European journal of pharmacology. 2023;947:175672. https://doi.org/10.1016/j.ejphar.2023.175672
15. Ahmed, B., Sultana, R., & Greene, M. W. Adipose tissue and insulin resistance in obese. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021;137:111315. https://doi.org/10.1016/j.biopha.2021.111315
16. Islam, M. S., Cai, L., & Horowitz, M. Recent therapeutic targets for the prevention and management of diabetic complications. World journal of diabetes. 2023;14(9):1330–1333. https://doi.org/10.4239/wjd.v14.i9.1330
17. Samson, S. L., Vellanki, P., Blonde, L., Christofides, E. A., Galindo, R. J., Hirsch, I. B., Isaacs, S. D., Izuora, K. E., Low Wang, C. C., Twining, C. L., Umpierrez, G. E., & Valencia, W. M. American Association of Clinical Endocrinology Consensus Statement: Comprehensive Type 2 Diabetes Management Algorithm - 2023 Update. Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists. 2023;29(5):305–340. https://doi.org/10.1016/j.eprac.2023.02.001
18. Rahayu, P.N., Handayani, A., & Suhariyadi. Hubungan kadar gula darah puasa dan profil lipid pada penderita diabetes melitus tipe 2 dengan kejadian stroke iskemik di RSUD R.A Basoeni Mojokerto. Jurnal Biosains Pascasarjana. 2020;22(2):50-62. Available from: https://e-journal.unair.ac.id/BIOPASCA/article/view/23372/12748
19. Kementerian Kesehatan Republik Indonesia (Kemkes RI). Survei Kesehatan Indonesia (SKI). Badan Kebijakan Pembangunan Kesehatan. 2023. Available from: https://www.kemkes.go.id/id/survei-kesehatan-indonesia-ski-2023
20. Lestari, S. S., Setiawan L, E. K., Rachmawati, B., & Candra, A. Relationship Between Fasting Blood Glucose Levels and Lipid Profiles in Type 2 Diabetes Mellitus Patients with Hypertension. Jurnal Kedokteran Diponegoro (Diponegoro Medical Journal).2024;13(5):254-260. https://doi.org/10.14710/dmj.v13i5.42645
21. Nakrani, M.N., Wineland, RH., & Anjum, F. Physiology, glucose metabolism. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2023 Available from: https://www.ncbi.nlm.nih.gov/books/NBK560599/
22. Huff, T., Boyd, B., & Jialal, I. Physiology, Cholesterol. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470561/