CONTENT-BASED IMAGE RETRIEVAL UNTUK PENCARIAN PRODUK PONSEL

Nickolas Cornelius Siantar, Jaqnson Hendryli, Dyah Erny Herwindiati

Abstract


Phone or smartphone and online shop, there is something that cannot be separated with human. There are so many type of smartphones show up in the market that people are confused on which one to get on the online stores. Smartphones recognition is done by using the Histogram of Oriented Gradient to recognize shapes of phones, Color Quantization to recognize the color, and Local Binary Pattern to recognize texture of the phones. The output of the Feature Extractor is a feature vector which is used on the LVQ to process recognize through finding the smallest Euclidean Distance between the trained vectors. The result of this paper is an application that can recognize 16 phone types using the image with the accuracy of 9.6%.

 

Pada saat ini, ponsel dan toko online merupakan sesuatu yang tidak dapat dipisahkan dari manusia. Begitu banyak jenis ponsel bermunculan setiap tahunnya sehingga menyebabkan manusia bingung dalam mengenali ponsel tersebut. Pada program pengenalan ponsel ini digunakan Histogram of Oriented Gradient untuk mengambil fitur berupa bentuk ponsel, Color Quantization untuk mengambil fitur warna, dan Local Binary Pattern untuk mengambil fitur tekstur ponsel. Hasil dari pengambilan fitur berupa fitur vektor yang digunakan pada Learning Vector Quantization untuk proses pengenalan dengan mencari nilai terkecil Euclidean Distance antara vektor fitur dengan vektor bobot terlatih. Hasil dari program pengenalan ini yaitu program dapat melakukan pengenalan terhadap 16 jenis ponsel dengan akurasi sebesar 9.6%.


Keywords


Color Quantization; Histogram of Oriented Gradient; Learning Vector Quantization; Local Binary Pattern; Smartphone

Full Text:

PDF

References


Rebecca Sentence, 2016, The new wave of visual search: what it can do, and what might be possible, https://searchenginewatch.com/2016/10/13/the-new-wave-of-visual-searchwhat-it-can-do-and-what-might-be-possible/, diakses tanggal 27 Agustus 2018.

Ying Li, C.C. Jay Kuo, and X. Wan, 2002, Image Databases: Search and Retrieval of Digital Imagery, John Wiley & Sons, Inc., Hoboken.

Digital Image, Computer Sciences, 2002, https://www.encyclopedia.com/computing/news-wires-white-papers-and-books/digitalimages, diakses tanggal 4 September 2018.

K. Kranti Kumar dan T. Venu Gopal, 2010, CBIR: Content Based Image Retrieval, https://www.researchgate.net/publication/235634738, diakses tanggal 1 September 2018.

Satya Mallick, Histogram of Oriented Gradients, 2016, https://www.learnopencv.com/histogram-of-oriented-gradients/, diakses tanggal 30 Agustus 2018.

Perfect Makanju, K Means and Image Quantization [Part 2], 2018,https://medium.com/consonance/k-means-and-image-quantization-part-2be0a62c50c11, diakses tanggal 10 September 2018.

Laurene Fausett, Fundamental of Neural Networks Architectures, 1994, Fundamental of Neural Network: Algorithms, and Applications, Prenctice Hall, Upper Saddle River.




DOI: http://dx.doi.org/10.24912/computatio.v3i1.4271

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Copyright of COMPUTATIO : JOURNAL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS (P-ISSN : 2549-2810  E-ISSN : 2549-2829)


Indexed by:

      

 

Published by:

Fakultas Teknologi Informasi

Faculty of Information Technology, Universitas Tarumanagara
Gedung R Lantai 11
Jl. Let.Jend. S.Parman No. 1 Jakarta 11440

 

Web Analytics