Prediksi Kelembapan Tanah Pada Tingkat Kecamatan di Wilayah Bogor Dengan Metode CNN LSTM
Isi Artikel Utama
Abstrak
Rincian Artikel
This work is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.
Referensi
Darwis, H., 2018, Pengelolaan Air Tanah, Pena Indis, Yogyakarta.
Landsat Missions, 2013, Landsat 8, https://www.usgs.gov/landsat-missions/landsat-8, diakses tanggal 13 Desember 2021.
Brown, Jesslyn, 2018, NDVI, the Foundation for Remote Sensing Phenology, https://www.usgs.gov/special-topics/remote-sensing-phenology/science/ndvi-foundation-remote-sensing-phenology, diakses tanggal 13 Desember 2021.
Caesar, P. Y., Isnawaty, A., Fid, 2016, Rancang bangun Protoype System Monitoring Kelembaban Tanah Melalui SMS Berdasarkan Hasil Penyiraman Tanaman “Studi Kasus Tanaman Cabai dan Tomat”, Semantik, No.1, Vol.2, Hal 97-110.
Aristiwijaya, Bayu, 2015, Identifikasi Potensi Sumber Air Dengan Citra Satelit Landsat 8 dan Sistem Informasi Geografis (Studi Kasus: Kabupaten Bojonegoro), Skripsi, Jurusan Teknik Geomatika, Fakultas Teknik Sipil dan Perencanaan, Institut Teknologi Sepuluh Nopember, Surabaya.
Lina, Qolbiyatul, 2019, Apa itu Convolutional Neural Network, https://medium.com/@16611110/apa-itu-convolutional-neural-network-836f70b193a4, diakses tanggal 14 Desember 2021.
Olah, Christopher, 2015, Understanding LSTM Networks, https://colah.github.io/posts/2015-08-Understanding-LSTMs/, diakses tanggal 14 Desember 2021.

