SKRINING ANTROPOMETRI PADA PRIA DAN WANITA USIA PRODUKTIF DALAM RANGKA PENCEGAHAN OBESITAS DI KALAM KUDUS II, KELURAHAN DURI KOSAMBI, JAKARTA

Main Article Content

Peter Ian Limas
Stanislas Kotska Marvel Mayello Teguh
Ayleen Nathalie Jap
Edwin Destra

Abstract

Obesity is a condition that occurs when the body has too much fat and is not balanced with the amount of muscle it has. Obesity is an increasing health problem and has a major impact on mortality and morbidity. Anthropometrics has an important role in screening a person's health status, one of which is obesity, so that by carrying out anthropometric screening, it is hoped that prevention and management of a person's health status can be correlated with obesity. This community service activity is carried out using the PDCA method which focuses on anthropometric screening and health education. Anthropometric screening measures parameters such as body weight, height, waist circumference, and hip circumference, which are important indicators for evaluating the risk of developing obesity. Therefore, anthropometry plays an important role in identifying risks and enabling the rapid and effective implementation of early interventions. Education regarding the importance of physical activity and healthy eating habits is included in this activity, so it is hoped that it can become a basis for maintaining and improving the quality of life and long-term health for the community.


ABSTRAK


Obesitas adalah kondisi yang muncul saat tubuh memiliki jumlah lemak yang terlalu tinggi dan tidak seimbang dengan jumlah otot yang dimiliki, obesitas merupakan masalah kesehatan yang semakin meningkat dan mempunyai dampak besar terhadap mortalitas dan morbiditas. Antropometri memiliki peran penting dalam skrining status kesehatan seseorang, yang salah satunya adalah obesitas, sehingga dengan dilakukannya skrining antropometri, diharapkan dapat dilakukan pencegahan dan tatalaksana terhadap status kesehatan seseorang yang terkorelasi dengan obesitas. Kegiatan pengabdian masyarakat ini dilaksanakan dengan metode PDCA yang berfokus pada skrining antropometri dan edukasi kesehatan.  Skrining antropometri mengukur parameter seperti berat badan, tinggi badan, lingkar pinggang, dan lingkar pinggul, yang merupakan indikator penting untuk mengevaluasi risiko terjadinya obesitas. Oleh karena itu, antropometri berperan penting dalam mengidentifikasi risiko dan memungkinkan penerapan intervensi dini secara cepat dan efektif. Edukasi mengenai pentingnya aktivitas fisik dan kebiasaan makan sehat diikutsertakan dalam kegiatan ini, sehingga diharapkan dapat menjadi landasan bagi menjaga dan meningkatkan kualitas hidup dan kesehatan jangka panjang bagi masyarakat

Article Details

Section
Articles

References

Carrión-Martínez, A., Buckley, B. J. R., Orenes‐Piñero, E., Marı́n, F., Lip, G. Y. H., & Rivera‐Caravaca, J. M. (2022). Anthropometric Measures and Risk of Cardiovascular Disease: Is There an Opportunity for Non-Traditional Anthropometric Assessment? A Review. In Reviews in Cardiovascular Medicine. https://doi.org/10.31083/j.rcm2312414

Casadei, K., & Kiel, J. (2024). Anthropometric Measurement. In StatPearls.

Chaput, J. P., Katzmarzyk, P. T., Barnes, J. D., Fogelholm, M., Hu, G., Kuriyan, R., Kurpad, A., Lambert, E. V., Maher, C., Maia, J., Matsudo, V., Olds, T., Onywera, V., Sarmiento, O. L., Standage, M., Tudor-Locke, C., Zhao, P., & Tremblay, M. S. (2017). Mid-upper arm circumference as a screening tool for identifying children with obesity: a 12-country study. Pediatric Obesity, 12(6), 439–445. https://doi.org/10.1111/IJPO.12162

Csige, I., Ujvárosy, D., Szabó, Z., Lőrincz, I., Paragh, G., Harangi, M., & Somodi, S. (2018). The Impact of Obesity on the Cardiovascular System. Journal of Diabetes Research, 2018, 1–12. https://doi.org/10.1155/2018/3407306

Destra, E., & Firmansyah, Y. (2022). Intervention Program in Effort to Reduce New Cases. Jurnal Pengabdian Mandiri, 1(5), 677–682.

Han, T. S., Al-Gindan, Y. Y., Govan, L., Hankey, C. R., & Lean, M. E. J. (2019). Associations of BMI, waist circumference, body fat, and skeletal muscle with type 2 diabetes in adults. Acta Diabetologica. https://doi.org/10.1007/S00592-019-01328-3

Hsuan, C.-F., Lin, F., Lee, T.-L., Yang, K., Tseng, W., Wu, Y., Yin, W.-H., Yeh, H., Wu, C.-C., Chang, W., Lee, Y.-H., Chen, J.-W., Sheu, H.-H., Hsieh, I., Chen, Y., Liu, M., Chen, C., Lin, L., Sung, S., … Chang, K.-C. (2022). The Waist-to-Body Mass Index Ratio as an Anthropometric Predictor for Cardiovascular Outcome in Subjects With Established Atherosclerotic Cardiovascular Disease. In Scientific Reports. https://doi.org/10.1038/s41598-021-04650-5

Kingsley, C. A., Etim, E. A., Everista, O. O., & Zacchaeus, A. J. (2022). Anthropometric Variables and Hematological Parameters Among People With Obesity in Sapele South-South Nigeria. In Journal of Medical Laboratory and Diagnosis. https://doi.org/10.5897/jmld2021.0168

Mameli, C., Krakauer, N. Y., Krakauer, J. C., Bosetti, A., Ferrari, C., Moiana, N., Schneider, L., Borsani, B., Genoni, T., & Zuccotti, G. (2018). The Association Between a Body Shape Index and Cardiovascular Risk in Overweight and Obese Children and Adolescents. In Plos One. https://doi.org/10.1371/journal.pone.0190426

Monaco, L., Monaco, M., Di Tommaso, L., Stassano, P., Castaldo, L., & Castaldo, G. (2014). Aortomesenteric fat thickness with ultrasound predicts metabolic diseases in obese patients. American Journal of the Medical Sciences, 347(1), 8–13. https://doi.org/10.1097/MAJ.0B013E318288F795

Noto, R. E., Leavitt, L., & Edens, M. A. (2023). Physiology, Muscle. In StatPearls.

Paoli, A., Mancin, L., Giacona, M. C., Bianco, A., & Caprio, M. (2020). Effects of a ketogenic diet in overweight women with polycystic ovary syndrome. Journal of Translational Medicine, 18(1), 1–11. https://doi.org/10.1186/s12967-020-02277-0

Rasmussen, J., Andersen, A., Fisker, A. B., Ravn, H., Sodemann, M., Rodrigues, A., Benn, C. S., & Aaby, P. (2012). Mid-upper-arm-circumference and mid-upper-arm circumference z-score: The best predictor of mortality. European Journal of Clinical Nutrition, 66(9), 998–1003. https://doi.org/10.1038/EJCN.2012.95

Sánchez-García, S., García-Peña, C., Duque-López, M. X., Juárez-Cedillo, T., Cortés-Núñez, A. R., & Reyes-Beaman, S. (2007). Anthropometric measures and nutritional status in a healthy elderly population. BMC Public Health, 7(1), 2. https://doi.org/10.1186/1471-2458-7-2

Schwinger, C., Fadnes, L. T., & Van Den Broeck, J. (2016). Using growth velocity to predict child mortality. American Journal of Clinical Nutrition, 103(3), 801–807. https://doi.org/10.3945/AJCN.115.118679

Sun, J., Wang, L., Lin, Y., Liu, Y., Liu, F., Liu, X., Dong, W., Cai, W., Chen, H., Xiao, M., Luo, H., Liu, X., & Duan, J. (2022). Anthropometric Parameters of Obesity Can Be Alternative Biomarkers for the Potential Cardiac Dysfunction in Obese Children. In Frontiers in Cardiovascular Medicine. https://doi.org/10.3389/fcvm.2022.850071

Tejera, C., Porca, C., Rodriguez-Carnero, G., Andújar, P., Casanueva, F. F., Bellido, D., & Crujeiras, A. B. (2022). Reducing Metabolic Syndrome through a Group Educational Intervention Program in Adults with Obesity: IGOBE Program. Nutrients, 14(5), 1066. https://doi.org/10.3390/nu14051066

Utkualp, N., & Ercan, I. (2015). Anthropometric Measurements Usage in Medical Sciences. BioMed Research International, 2015, 1–7. https://doi.org/10.1155/2015/404261