Analysis of Twitter's Function as a Media communication of Public Transportation

Mohammad Jafar Loilatu, Bambang Irawan, Salahudin Salahudin, Iradhad Taqwa Sihidi
| Abstract views: 1378 | views: 265


Social media plays a significant role in public services, one of which is public transport, while social media often promotes active participation and makes cities more adaptive by using social media. Public transport in Jakarta uses social media as a form of public contact in the provision of services. This study looks at the role of Jakarta's transport social media in delivering excellent information, this research looks at social media twitter accounts consisting of Mass Rapid Transit (MRT), Light Rapid Transit (LRT) and Bus Rapid Transit (BRT) accounts. The method used in this research is a quantitative approach to text analysis focused on Nvivo analysis methods. The phases of analysis using Nvivo begin with: (1) collection data, (2) import data, (3) coding data, (4) data classification, and (5) display data. The findings of this study replied that the social media twitter role in public transport in Jakarta has information features such as: disability rights information, route changes, traffic jams and services. The information provided by the MRT, LRT and BRT twitter social media accounts depends on the activeness of the Twitter social media so that the information can be acknowledged by users of public transport. The flow of information generated by the MRT, LRT and BRT social media accounts through; (1) data sources, (2) collection data, (3) responses, and (4) public information provided by each Twitter account. 

Media sosial memiliki peran yang besar dalam pelayanan publik salah satunya transportasi publik, media sosial juga mendorong interaksi menjadi aktif dan menjadikan kota lebih adaptif dengan menggunakan media sosial. Transportasi publik Jakarta menggunakan media sosial sebagai alat komunikasi publik dalam memberikan pelayanan. Penelitian ini melihat fungsi media sosial transportasi Jakarta dalam memberikan informasi pelayanan, analisis ini melihat akun media sosial twitter yang terdiri dari akun Mass Rapid Transit (MRT), Light Rapid Transit (LRT) dan Bus Rapid Transit (BRT). Metode dalam penelitian ini menggunakan pendekatan kuantitatif text analysisberbasis software dengan tools analisis Nvivo. Tahapan analisis menggunakan Nvivo dimulai dengan; (1) capturing data, (2) import data, (3) coding data, (4) klasifikasi data, dan (5) display data. Hasil dari penelitian ini menjawab bahwa fungsi media sosial twitter pada transportasi publik Jakarta memiliki karakteristik informasi seperti; informasi tentang hak disabilitas, perubahan rute, kemacetan, dan pelayanan. Informasi yang diberikan oleh akun media sosial twitter MRT, LRT, dan BRT bergantung pada keaktifan media sosial twitter, sehingga informasi tersebut dapat diterima oleh pengguna transportasi publik. Alur informasi yang disampaikan oleh akun media sosial MRT, LRT dan BRT melalui; (1) data sources, (2) processing data, (3) respon dan (4) informasi publik yang disampaikan oleh masing-masing akun twitter.


communication; information; services; transportation; twitter; informasi; komunikasi; transportasi; pelayanan

Full Text:



Bazeley, P. (2002). The evolution of a project involving an integrated analysis of structured qualitative and quantitative data: From N3 to NVivo. International Journal of Social Research Methodology, 5(3), 229–243.

Bertot, J., Estevez, E., & Janowski, T. (2016). Universal and contextualized public services: Digital public service innovation framework. Government Information Quarterly, 33(2), 211–222.

Brandão, C. (2015). P. Bazeley and K. Jackson, Qualitative Data Analysis with NVivo (2nd ed.) . Qualitative Research in Psychology, 12(4), 492–494.

Charalabidis, Y., Loukis, E. N., Androutsopoulou, A., Karkaletsis, V., & Triantafillou, A. (2014). Passive crowdsourcing in government using social media. Transforming Government: People, Process and Policy, 8(2), 283–308.

Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J. R., Mellouli, S., Nahon, K., Pardo, T. A., & Scholl, H. J. (2012). Understanding smart cities: An integrative framework. Proceedings of the Annual Hawaii International Conference on System Sciences, 2289–2297.

Cottrill, C. D., & Derrible, S. (2015). Leveraging Big Data for the Development of Transport Sustainability Indicators. Journal of Urban Technology, 22(1), 45–64.

Cottrill, C., Gault, P., Yeboah, G., Nelson, J. D., Anable, J., & Budd, T. (2017). Tweeting Transit: An examination of social media strategies for transport information management during a large event. Transportation Research Part C: Emerging Technologies, 77, 421–432.

Ebrahim, Z., & Irani, Z. (2005). E-government adoption: Architecture and barriers. Business Process Management Journal, 11(5), 589–611.

Elving, W. J. L., & May Postma, R. (2017). Social Media: The Dialogue Myth? How Organizations Use Social Media for Stakeholder Dialogue. Public Relations and Communication Management, 2(1), 123–141.

Elwani, R. S., & Kurniawan, F. (2020). Pemanfaatan Media Sosial Dalam Pemasaran Sosial Bagi Remaja. Jurnal Komunikasi, 12(1), 64.

Fattah, K. N. (2018). Towards inclusive cities in Bangladesh: Are policies sufficient to promote inclusiveness? December.

Flügge, B. (2017). Smart mobility - connecting everyone: Trends, concepts and best practices. Smart Mobility - Connecting Everyone: Trends, Concepts and Best Practices, 1–293.

Gil de Zúñiga, H., & Diehl, T. (2017). Citizenship, Social Media, and Big Data: Current and Future Research in the Social Sciences. Social Science Computer Review, 35(1), 3–9.

Grubmüller, V., Götsch, K., & Krieger, B. (2013). Social media analytics for future oriented policy making. European Journal of Futures Research, 1(1), 1–9.

Hämäläinen, M. (2019). A Framework for a Smart City Design: Digital Transformation in the Helsinki Smart City. September 2019, 63–86.

Hess, D. J. (2019). Coalitions, framing, and the politics of energy transitions: Local democracy and community choice in California. Energy Research and Social Science, 50(July 2018), 38–50.

Isep Parid Yahya. (2019). Media Framing vs Framing by Politician ( A Study About the Mutual Influences Between Media Frames and Frames by Politicians During the Political Campaign A Head of Jakarta Governor Election ). Jurnal Studi Pemerintahan, 10(1), 1–18.

Jaiswal, P. (2017). Inclusive Planning Smart Solution for City Design. International Journal on Emerging Technologies, 8(1), 521–523.

Kacem, A., & Abid, I. H. (2016b). Towards Improving e-Government Services Using Social Media- Based Citizen ’ s Profile Investigation. ICEGOV, 3, 187–190.

Klüver, H. (2009). Measuring interest group influence using quantitative text analysis. European Union Politics, 10(4), 535–549.

Kousiouris, G., Akbar, A., Sancho, J., Ta-shma, P., Psychas, A., Kyriazis, D., & Varvarigou, T. (2018). An integrated information lifecycle management framework for exploiting social network data to identify dynamic large crowd concentration events in smart cities applications. Future Generation Computer Systems, 78, 516–530.

Kramers, A., Höjer, M., & Lövehagen, N. (2014). Smart Sustainable Cities e Exploring ICT Solutions for Reduced Energy Use in Cities. Enviroemntal Modelling & Software, 1–11.

Maftuhin, A. (2017). Defining Inclusive City: Origin, Theories, and Indicators. Tata Loka, 19(2), 93–103.

Majumdar, S. R. (2017). The case of public involvement in transportation planning using social media. Case Studies on Transport Policy, 5(1), 121–133.

Merluci, I., Eds, C. S., & Bet, C. (2019). Understanding the complexity of inclusive public space design – Reflections on the case study of Slovenia (Issue January).

Molinillo, S., Anaya-Sánchez, R., Morrison, A. M., & Coca-Stefaniak, J. A. (2019). Smart city communication via social media: Analysing residents’ and visitors’ engagement. Cities, 94(December 2018), 247–255.

Mora, H. M., & Iglesias, V. G. (2017). Improving Urban Accessibility: A Methodology for Urban Dynamics Analysis in Smart, Sustainable and Inclusive Cities. 11th International Conference on Urban Regeneration and Sustainability (Sustainable City 2016) Www.Witconferences.Com, 12(3), 357–367.

Muhammad Kashif Imran and Syed Muhammad Javed Iqbal. (2018). Does social media promote knowledge exchange? A qualitative insight. Emeralldisight, 290215, 573–277.

Muhtarom, Murtianto, Y. H., & Sutrisno. (2017). Thinking process of students with high-mathematics ability: (a study on QSR NVivo 11-assisted data analysis). International Journal of Applied Engineering Research, 12(17), 6934–6940.

Neto, J. S. D. O. (2018). Inclusive Smart Cities: Theory and Tools to Imporve the Experience of People with Disabilities in Urban Places.

Neuendorf, K. A., & Kumar, A. (2015). Emerging trends in content analysis. The International Encyclopedia of Political Communication, 1(May), 1–10.

Nofrima, S., Nurmandi, A., Kusuma Dewi, D., & Salahudin, S. (2020). Cyber-activism on the dissemination of #Gejayanmemanggil: Yogyakarta’s student movement. Jurnal Studi Komunikasi (Indonesian Journal of Communications Studies), 4(1), 103.

Novianti, E., & Wulung, S. R. P. (2020). Implementasi Komunikasi Daring dalam Menunjang Jawa Barat sebagai Destinasi Pariwisata Cerdas. Jurnal Komunikasi, 12(1), 53.

Nurmandi, A., Almarez, D., Roengtam, S., Salahudin, Jovita, H. D., Kusuma Dewi, D. S., & Efendi, D. (2018). To what extent is social media used in city government policy making? Case studies in three asean cities. Public Policy and Administration, 17(4), 600–618.

Okarma, K., & Andriukaitis, D. (2019). Sensors in Intelligent Transportation Systems. Journal of Advanced Transportation, 2019, 1–8.

Pezanowski, S., MacEachren, A. M., Savelyev, A., & Robinson, A. C. (2018). SensePlace3: a geovisual framework to analyze place–time–attribute information in social media. Cartography and Geographic Information Science, 45(5), 420–437.

Roberts, C. W. (2000). A Conceptual Framework for Quantitative Text Analysis. Quality & Quantity, 34(3), 259–274.

Salahudin, Nurmandi, A., Jubba, H., Qodir, Z., Jainuri, & Paryanto. (2020). Islamic Political Polarisation on Social Media During the 2019 Presidential Election in Indonesia. Asian Affairs.

Shvetsova, O. A. (2017). Smart education in high school: New perspectives in global world. Proceedings of the 2017 International Conference “Quality Management, Transport and Information Security, Information Technologies”, IT and QM and IS 2017, 688–691.

Stieglitz, S., Mirbabaie, M., Ross, B., & Neuberger, C. (2018a). Social media analytics – Challenges in topic discovery, data collection, and data preparation. International Journal of Information Management, 39(December 2017), 156–168.

Stone, M., Knapper, J., Evans, G., & Aravopoulou, E. (2018). Information management in the smart city. Bottom Line, 31(3–4), 234–249.

Tregua, M., Auria, A. D., & Bifulco, F. (2014). Digital City vs . Smart City : a fuzzy debate. Proceedings in Scientific Conference 9., 2014(March), 393–399.

van den Buuse, D., & Kolk, A. (2019). An exploration of smart city approaches by international ICT firms. Technological Forecasting and Social Change, 142(February), 220–234.

Wang, T., Hussain, A., Bhutta, M. N. M., & Cao, Y. (2019). Enabling bidirectional traffic mobility for ITS simulation in smart city environments. Future Generation Computer Systems, 92, 342–356.

Wang, Y., Wang, T., Ye, X., Zhu, J., & Lee, J. (2016). Using social media for emergency response and urban sustainability: A case study of the 2012 Beijing rainstorm. Sustainability (Switzerland), 8(1), 1–17.

Woolf, N. H., & Silver, C. (2018). Qualitative Analysis Using Nvivo, The Five Level QDA Method. In Routledge (pp. 1–1235). Routledge.

Copyright (c) 2021 Jurnal Komunikasi
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


  • There are currently no refbacks.