STATISTICAL CORRECTION OF A DYNAMIC PILE BEARING CAPACITY FORMULA BASED ON PDA DATA
Main Article Content
Abstract
The calculation of pile bearing capacity using a dynamic formula is considered a practical approach for evaluating the capacity of foundation piles. However, its results are often questioned when compared to the CAPWAP analysis outcomes derived from PDA testing. This study aims to assess the accuracy of the dynamic formula, develop a correction model using a statistical approach in the form MLR, and evaluate the effectiveness of the resulting correction model in predicting pile bearing capacity. A total of 84 pile datasets were utilized in this research, comprising various pile dimensions and PDA-derived parameters, including the maximum energy transferred to the pile (EMX), permanent pile settlement (S = DFN), and elastic settlement (C = DMX – DFN). The analysis results indicated that the dynamic formula could be corrected using the MLR approach. The correction model produced multiplier coefficients of 1.09 for parameter S and 0.67 for parameter C, with a coefficient of determination of 0.96 and a MAPE value of 19.21%, which represents the average deviation of the predicted results from the actual values and falls into the accurate category based on Lewis’ classification. The model is deemed sufficiently reliable for use as an alternative method in the preliminary evaluation of pile bearing capacity.
Abstrak
Perhitungan daya dukung tiang menggunakan formula dinamik merupakan pendekatan praktis dalam mengevaluasi kapasitas tiang fondasi. Namun, hasil perhitungannya kerap diragukan jika dibandingkan dengan hasil analisis CAPWAP dari uji PDA. Penelitian ini bertujuan untuk mengevaluasi akurasi formula dinamik, mengembangkan model koreksi dengan pendekatan statistik berupa MLR, serta menilai efektivitas model koreksi yang dihasilkan dalam memprediksi daya dukung tiang. Pada penelitian ini digunakan 84 data tiang dengan variasi dimensi tiang dan parameter dari uji PDA yang berupa energi maksimum yang tertransfer ke tiang (EMX), penurunan permanen tiang (S = DFN), dan penurunan elastis tiang (C = DMX – DFN). Hasil analisis menunjukkan bahwa formula dinamik dapat dikoreksi melalui pendekatan MLR. Model koreksi menghasilkan koefisien pengali untuk parameter S sebesar 1,09 dan C sebesar 0,67, serta memiliki koefisien determinasi sebesar 0,96 dan nilai MAPE yang menunjukkan rata-rata deviasi hasil prediksi terhadap aktual sebesar 19,21%, yang termasuk dalam kategori akurat menurut klasifikasi Lewis. Model ini dinilai cukup andal untuk digunakan sebagai pendekatan alternatif dalam tahap evaluasi awal daya dukung tiang.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under Jurnal Mitra Teknik Sipil (JMTS) Creative Commons Attribution-ShareAlike 4.0 International License.References
ASTM Internasional. (2012). Standard test method for high-strain dynamic testing of deep foundations (ASTM D4945-12).
Chiarli, K. T., & Susilo, A. J. (2021). Analisis kekuatan sambungan tiang pancang beton terhadap gaya tarik, lateral, dan momen pada tanah kohesif. JMTS: Jurnal Mitra Teknik Sipil, 4(3), 607-614.
Cholissodin, I., Sutrisno, Soebroto, A. A., Hasanah, U., & Febiola, Y. I. (2019). AI, machine learning & deep learning (teori & implementasi). Fakultas Ilmu Komputer Universitas Brawijaya.
Cosentino, P. J., Bostater Jr., C. R., Franqui, A., Rogulski III, R. J., & Jensen, M. (2020). Quantifying pile rebound with deflection measuring systems best suited for Florida soils. Department of Transportation Florida.
Das, B. M. (2011). Principles of foundation engineering (7th ed.). Cengage Learning.
Fernanda, N. O., & Susilo, A. J. (2023). Analisis efisiensi tiang ujung pada fondasi tiang bor di proyek Gading Serpong. JMTS: Jurnal Mitra Teknik Sipil, 6(2), 301-308.
Green, T. A. L., & Kightley, M. L. (2005). CAPWAP testing-theory and application. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, 2115-2118. https://doi.org/10.3233/978-1-61499-656-9-2115
Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31, 685-695. https://doi.org/10.1007/s12525-021-00475-2
Jarushi, F., Cosentino, P., Kalajian, E., & Dekhn, H. (2015). CPT pore water pressure correlations with PDA to identify pile drivability problem. International Journal of Geological and Environmental Engineering, 9(2), 55-61.
Lewis, C. D. (1982). Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting. Butterworth Scientific.
Livia, & Suhendra, A. (2018). Studi kapasitas tiang bor berdasarkan metode pile driving analyzer (PDA) dan load cell. JMTS: Jurnal Mitra Teknik Sipil, 1(1), 82-91.
Marzuki, A., Norhadi, A., & Eriza, M. (2022). Rasio daya dukung tiang rencana terhadap daya dukung tiang aktual. Jurnal Gradasi Teknik Sipil, 6(1), 1-10.
Ngabidin, Z., Sanwidi, A., & Arini, E. R. (2023). Implementasi metode double exponential smoothing brown untuk meramalkan jumlah penduduk miskin. EULER : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 11(2), 328-338. https://doi.org/10.37905/euler.v11i2.23054
Rahardjo, P. P. (2013). Manual pondasi tiang (4th ed.). Universitas Katolik Parahyangan.
Simanjuntak, J. O., & Suita, D. (2017). Analysis of bearing capacity pile foundation with using capwap software for testing pile driving analyzer (PDA) at fasfel development project parlimbungan ketek sikara-kara mandailing natal district (North Sumatera). Journal of Physics: Conference Series, 930. https://doi.org/10.1088/1742-6596/930/1/012010
Smith, E. A. L. (1960). Pile driving analysis by the wave equation. Journal of the Soil Mechanics and Foundations Division, 86(4). https://doi.org/10.1061/JSFEAQ.000028
Tatachar, A. V. (2021). Comparative assessment of regression models based on model evaluation metrics. International Research Journal of Engineering and Technology (IRJET), 8(9), 853-860.
Tengdyantono, C., Sentosa, G. S., & Kawanda, A. (2018). Analisis daya dukung tiang pancang dengan metode statik, dinamik, dan persamaan gelombang software GRLWEAP. JMTS: Jurnal Mitra Teknik Sipil, 1(2), 171-180.
Veronica, Prihatiningsih, A., & Iskandar, A. (2023). Pemodelan parameter vibration monitoring test berdasarkan hasil iterasi nilai rasio redaman (ξ). JMTS: Jurnal Mitra Teknik Sipil, 6(2), 415-428.
Yazdani, E., Wang, J., & Evans, T. M. (2021). Case study of a driven pile foundation in diatomaceous soil. II: Pile installation, dynamic analysis, and pore pressure generation. Journal of Rock Mechanics and Geotechnical Engineering, 13, 446-456. https://doi.org/10.1016/j.jrmge.2020.10.005