PENGARUH EFEK TEBAL PELAT TERHADAP KONDISI DIAFRAGMA BERDASARKAN INDEKS FLEKSIBILITAS

Main Article Content

Sunarjo Leman
Husain

Abstract

The floor diaphragm is a horizontal structural element that functions to distribute lateral loads to the building’s lateral load-resisting system. Floor diaphragms can be assumed as rigid, semi-rigid, or flexible. However, in practical applications, the diaphragm must be defined according to the in-plane stiffness characteristics of the slab itself. One approach is by determining the diaphragm flexibility index. This study analyzes three variables that affect diaphragm flexibility, namely: (a) the building’s plan aspect ratio (S/De), (b) the type of the floor system, and (c) the slab thickness. All models were analyzed under static seismic loads without considering accidental eccentricity. The loads were distributed at each node, with meshing divided into 1 m2 grids, using Midas Civil software. Based on the obtained flexibility index values, it can be concluded that greater slab thickness leads to higher in-plane diaphragm stiffness under lateral loads. Regardless of the slab thickness and plane aspect ratio, the type of the floor system used significantly influences diaphragm stiffness.


Abstrak


Diafragma lantai merupakan elemen struktural horizontal yang berperan dalam mendistribusikan beban lateral ke sistem penahan beban lateral bangunan. Diafragma lantai dapat diasumsikan sebagai kaku, semi-kaku, dan fleksibel. Namun dalam penerapannya di lapangan, diafragma harus disesuaikan berdasarkan karakterisitik kekakuan dalam bidang pelat itu sendiri. Salah satu cara adalah dengan mengetahui nilai dari indeks fleksibilitas diafragma. Tiga variabel yang memengaruhi fleksibilitas diafragma dianalisis dalam penelitian ini, yaitu: (a) rasio aspek denah bangunan (S/De), (b) jenis pelat lantai, dan (c) tebal pelat lantai. Seluruh model yang dianalisis menggunakan beban gempa statik tanpa memperhitungkan eksentrisitas yang tidak disengaja yang didistribusikan pada tiap nodal yang telah dibagi setiap 1 m2 menggunakan perangkat lunak Midas Civil. Berdasarkan nilai indeks fleksibilitas yang dihasilkan, dapat disimpulkan bahwa semakin besar ketebalan pelat maka kekakuan diafragma lantai terhadap beban lateral akan semakin tinggi. Terlepas dari ketebalan pelat dan rasio aspek denah bangunan, jenis pelat yang digunakan memiliki pengaruh yang signifikan terhadap kekakuan diafragma.

Article Details

Section
Articles

References

American Society of Civil Engineers. (2021). Minimum design loads and associated criteria for buildings and other structures (ASCE/SEI 7-22). https://doi.org/10.1061/9780784415788

Badan Standardisasi Nasional. (2019). Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan nongedung (SNI 1726:2019).

Badan Standardisasi Nasional. (2019). Persyaratan beton struktural untuk bangunan gedung dan penjelasan (SNI 2847:2019).

Concrete Reinforcing Steel Institute. (2019). Design guide for reinforced concrete diaphragms (edisi ke 1). Concrete Reinforcing Steel Institute.

Dilsiz, A., & Ozuygur, A. R. (2021, 13-15 Oktober). Effects of using rigid diaphragm in dynamic analysis of high-rise buildings per regulations of TBSC 2018. 6th International Conference on Earthquake Engineering and Seismology, Gebze, Kocaeli/Turkey.

Hassan, A. M. (2022). Comparative study between using rigid diaphragm and flexible diaphragm slabs in multi-story buildings (solid slab system) under earthquake loads. Texas Journal of Engineering and Technology, 9, 150-166.

Huang, Y., Zhang, X., Wang, L., & Hu, X. (2023). A simplified method for evaluating the diaphragm flexibility for frame-shear wall structure under earthquake load. Buildings, 13(2), 376. https://doi.org/10.3390/buildings13020376

Ju, S. H., & Lin, M. C. (1999). Comparison of building analyses assuming rigid or flexible floors. Journal of Structural Engineering, 125(1), 25-31. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:1(25)

Ruggieri, S., Porco, F., & Uva, G. (2020). A practical approach for estimating the floor deformability in existing RC buildings: Evaluation of the effects in the structural response and seismic fragility. Bulletin of Earthquake Engineering, 18(5), 2083-2113. https://doi.org/10.1007/s10518-019-00774-2

Shanthika, K., Jayasinghe, J. A. S. C., & Bandara, C. S. (2022). Influence of slab system in transfer of lateral loads to reinforced concrete shear wall. Engineer: Journal of the Institution of Engineers, Sri Lanka, 55(2), 111. https://doi.org/10.4038/engineer.v55i2.7513

Tanuwidjaja, H. R., Santoso, G. K., & Tanuwidjaja, E. (2021). Rigidity boundaries of floor reinforced concrete diaphragm. Dalam Mohammed, B. S., Shafiq, N., Rahman M. Kutty, S., Mohamad, H., Balogun, A. L. (Eds.), Lecture Notes in Civil Engineering: Vol. 132. ICCOEE2020 (pp. 476-483). Springer. https://doi.org/10.1007/978-981-33-6311-3_55

Tena-Colunga, A., Chinchilla-Portillo, K. L., & Juárez-Luna, G. (2015). Assessment of the diaphragm condition for floor systems used in urban buildings. Engineering Structures, 93, 70-84. https://doi.org/10.1016/j.engstruct.2015.03.025

Tena-Colunga, A., & Sabanero-García, R. (2023). Impact of diaphragm flexibility on dynamic properties and seismic design parameters of irregular buildings in plan. Journal of Building Engineering, 80, 108007. https://doi.org/https://doi.org/10.1016/j.jobe.2023.108007