DIGITALISASI METODE KONSTRUKSI PADA PROYEK HIGH-RISE BUILDING

Main Article Content

Daniel
Stefanus Yobel Hendrawan
Oei Fuk Jin

Abstract

The construction of high-rise buildings is one of the tasks with high levels of risk and complex coordination. Technological innovations such as the internet of things (IoT), 3D printing, virtual reality (VR), artificial intelligence (AI), and building information modeling (BIM) have become solutions in facing the existing risks and challenges. The systematic literature review (SLR) method is used to analyze the development of digital transformation in high-rise building construction projects, so that the extent to which technology can help improve project efficiency, productivity, and quality can be understood. The stages of this SLR method are carried out through literature collection, identification process, and analysis of relevant articles on the discussion topic. Out of the 48 selected literature studies, it is shown that current construction digitalization involves the use of technology 4.0, construction robots, and automatic construction methods. All three have great potential for effective and efficient project management performance, as well as reducing occupational safety risks. However, the implementation of digital technology still faces various challenges, especially in terms of infrastructure provision and skilled human resources.


Abstrak


Proyek konstruksi high-rise building merupakan salah satu pekerjaan dengan tingkat risiko yang tinggi serta koordinasi yang kompleks. Inovasi teknologi seperti internet of things (IoT), 3D printing, virtual reality (VR), artificial intelligence (AI) hingga building information modeling (BIM) telah menjadi solusi dalam menghadapi risiko serta tantangan yang ada. Metode systematic literature review (SLR) digunakan dalam menganalisis perkembangan transformasi digital pada proyek konstruksi high rise building, sehingga dapat diketahui sejauh mana peran teknologi dapat membantu meningkatkan efisiensi, produktivitas, dan kualitas proyek. Tahapan metode SLR ini dilakukan melalui pengumpulan literatur, proses identifikasi, hingga analisis artikel-artikel yang relevan terhadap topik pembahasan. Dari 48 studi literatur yang dipilih, menunjukkan bahwa digitalisasi konstruksi saat ini berupa penggunaan teknologi 4.0, robot konstruksi, serta metode konstruksi otomatis, ketiga hal tersebut memiliki potensi yang besar terhadap kinerja manajemen proyek yang efektif dan efisien, serta dapat mengurangi risiko keselamatan kerja. Meskipun demikian, implementasi teknologi digital masih menghadapi berbagai tantangan khususnya dalam hal penyediaan infrastruktur serta tenaga manusia yang terampil.

Article Details

Section
Articles

References

Abbas, R., Westling, F. A., Skinner, C., Hanus-Smith, M., Harris, A., & Kirchner, N. (2020). Built view: Integrating LiDAR and BIM for real-time quality control of construction projects. Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC), 37, 233-239. DOI: 10.22260/ISARC2020/0034

Bennett, S. T., Adamczyk, P. G., Dai, F., Veeramani, D., Wehner, M., & Zhu, Z. (2022). Exoskeletons in construction and their role in the future of work. Proceedings of the 1st Future of Construction Workshop at the International Conference on Robotics and Automation. https://par.nsf.gov/servlets/purl/10484589

Bock, T., & Linner, T. (2016). Site automation: automated/robotic on-site factories. Cambridge University Press.

Dersten, S., Axelsson, J., & Fröberg, J. (2015). An analysis of a layered system architecture for autonomous construction vehicles. 2015 Annual IEEE Systems Conference (SysCon) Proceedings, 582-588. doi: 10.1109/SYSCON.2015.7116814

Dolla, T., Jain, K., & Delhi, V. S. K. (2023). Strategies for digital transformation in construction projects: stakeholders’ perceptions and actor dynamics for Industry 4.0. Journal of Information Technology in Construction, 28, 151–175. DOI: 10.36680/j.itcon.2023.008

Dupont, Q. F. M., Chua, D. K. H., Tashrif, A., & Abbott, E. L. S. (2017). Potential applications of UAV along the construction's value chain. Procedia Engineering, 182, 165-173. https://doi.org/10.1016/j.proeng.2017.03.155

Eber, W. (2020). Potentials of artificial intelligence in construction management. Organization, Technology and Management in Construction 2020, 12(1), 2053–2063. https://doi.org/10.2478/otmcj-2020-0002

European Construction Sector Observatory. (2021). Digitalization in the construction sector (analytical report). European Commission. https://ec.europa.eu/docsroom/documents/45547

Haeusler, M. H., Schnabel, M, A., & Fukuda, T. (Eds.). (2019). Intelligent & Informed: Proceedings of the 24th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2019). Association for Computer-Aided Architectural Design Research in Asia.

Ibrahim, F. S. B., Esa, M. B., & Rahman, R. A. (2021). The adoption of IOT in the Malaysian construction industry: towards construction 4.0. International Journal of Sustainable Construction Engineering and Technology, 12(1), 56-67. https://publisher.uthm.edu.my/ojs/index.php/IJSCET/article/view/6299

Ikeda, Y., & Harada, T. (2006). Application of the automated building construction system using the conventional construction method together. Proceedings of the 23rd International Symposium on Automation and Robotics in Construction (ISARC), 35.

Kagan, P. (2018). Management, mechanization and automation of work in the construction of high-rise buildings. MATEC Web Conf, 170, 01071. https://doi.org/10.1051/matecconf/201817001071

Khasani, R. R. (2018). Assessment of bim in high-rise building construction in Indonesia. International Journal of Scientific & Technology Research, 7(7), 112-117.

Kim, S., Peavy, M., Huang, P-C., & Kim, K. (2021). Development of BIM-integrated construction robot task planning and simulation system. Automation in Construction, 127, 103720. https://doi.org/https://doi.org/10.1016/j.autcon.2021.103720

Linner, T. and Bock, T. (2009). Customization in architecture: Towards customizable intelligent buildings. Conference on Mass Customization, Personalization and Co-creation.

Linner, T., Pan, M., Pan, W., Taghavi, M., Pan, W., & Bock, T. (2018). Identification of usage scenarios for robotic exoskeletons in the context of the Hong Kong construction industry. Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC), 40-47. https://doi.org/10.22260/isarc2018/0006

Li, H., Rezgui, Y., & Rana, O. F. (2013). Editorial for special issue: Cloud computing and distributed data management in the AEC – architecture, Engineering and Construction Industry. Advanced Engineering Informatics, 27(2), 158–159. https://doi.org/10.1016/j.aei.2013.04.002

Lu, Y., Xu, X., & Wang, L. (2020). Smart manufacturing process and system automation – A critical review of the standards and envisioned scenarios. Journal of Manufacturing Systems, 56, 312-325. https://doi.org/10.1016/j.jmsy.2020.06.010

Maeda, J. (1994). Development and application of the SMART system. Automation and Robotics in Construction XI, 457-464.

Mao, Z., Gonzalez, V. A., & Zou, Y. (2022). Exploring a digital twin framework for lean management of constraints in construction: A literature review. IOP Conference Series: Earth and Environmental Science, 1101, 082019. DOI 10.1088/1755-1315/1101/8/082019

Marinov, B. (2019). Passive exoskeletons establish a foothold in automotive manufacturing. Forbes. https:/ /www.forbes.com/sites/borislavmarinov/2019/05/15/passive-exoskeletons-establish-a-foothold-in-automotive-manufacturing/?sh=7bfbf40534ce

Martinez, G. J., Masoud, G., & F, A. L. (2020). UAV integration in current construction safety planning and monitoring processes: Case study of a high-rise building construction project in Chile. Journal of Management in Engineering, 36(3), 05020005. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000761

Miyakawa, H., Ochiai, J., Oohata, K., & Shiokawa, T. (2000). Application of automated building construction system for high-rise office building. Proceedings International Symposium on Automation and Robotics in Construction (ISARC), 1-6.

Mohammadpour, A., Karan, E., & Asadi, S. (2019). Artificial intelligence techniques to support design and construction. Waterloo, 36, 1282-1289. DOI:10.22260/ISARC2019/0172

Monla, Z., Assila, A., Beladjine, D., & Zghal, M. (2023). Maturity evaluation methods for BIM-based AR/VR in construction industry: A literature review. IEEE Access, 11, 101134–101154. https://doi.org/10.1109/access.2023.3281265

Ngadiman, N., Badrulhissham, I. A., Mohamad, M., Azhari, N., Kaamin, M., & Hamid, N. B. (2019). Monitoring slope condition using UAV technology. Civil Engineering and Architecture. 7(6A), 1-6. DOI: 10.13189/cea.2019.071401

Nikmehr, B., Hosseini, M. R., Martek, I., Zavadskas, E. K., & Antucheviciene, J. (2021). Digitalization as a strategic means of achieving sustainable efficiencies in construction management: A critical review. Sustainability, 13(9), 5040. https://doi.org/10.3390/su13095040

Oesterreich, T. D., & Teuteberg, F. (2016). Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry, 83, 121-139. https://doi.org/10.1016/j.compind.2016.09.006

Ory, S., & Abraham, W. (1995). Knowledge-based system for construction planning of high-rise buildings. Journal of Construction Engineering and Management, 121(2), 172–182. https://doi.org/10.1061/(ASCE)0733-9364(1995)121:2(172)

Oscar, L. H., Cerqueira, L. C., Cunha, P. H., & Qualharini, E. L. (2023). Generative Design in civil construction: A case study in Brazil. Frontiers in Built Environment, 9. https://doi.org/10.3389/fbuil.2023.1150767

Parascho, S. (2022). Construction robotic: From automation to collaboration. Annual Review of Control, Robotics, and Autonomous Systems, 6(1), 183-204.

Piroozfar, P., Farr, E. R., Essa, A., Boseley, S., & Jin, R. (2018). Augmented reality (AR) and virtual reality (VR) in construction industry: An experiential development workflow. The Tenth International Conference on Construction in the 21st Century (CITC-10).

Rohani, M., Fan, M., & Yu, C. (2013). Advanced visualization and simulation techniques for Modern Construction Management. Indoor and Built Environment, 23(5), 665–674. https://doi.org/10.1177/1420326x13498400

Sacks, R., & Goldin, M. (2007). Lean management model for construction of high-rise Apartment Buildings. Journal of construction engineering and Management, 133(5), 374-384. https://doi.org/10.1061/(ASCE)0733-9364(2007)133:5(374)

Sekiguchi, T., Honma, K., Mizutani, R., & Takagi, H. (1997). The development and application of an automatic building construction system using push-up machines. Proceedings of the 14th International Symposium on Automation and Robotics in Construction, 321-328. https://doi.org/10.22260/ISARC1997/0040

Shang, Z., & Shen, Z. (2017). Real-time 3D reconstruction on construction site using visual SLAM and UAV. Construction Research Congress 2018, 305-315.

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. https://doi.org/10.1016/j.jbusres.2019.07.039

Sobeih, T., Salem, O., Genaidy, A., Abdelhamid, T., & Shell, R. (2009). Psychosocial factors and musculoskeletal disorders in the construction industry. Journal of Construction Engineering and Management, 135(4). https://doi.org/10.1061/(ASCE)0733-9364(2009)135:4(267)

Tjandra, K. D., Irawan, F. G., Nugraha, P., & Sunindijo, R. Y. (2022). Drone readiness in the Indonesian construction industry. Construction Economics and Building, 22(4), 36–58. https://search.informit.org/doi/10.3316/informit.874476939060499

Xu, X. & de Soto, G. B. (2020). On-site autonomous construction robots: A review of research areas, technologies, and suggestions for advancement. Proceedings of the International Symposium on Automation and Robotics in Construction, 37, 385-392.

Yoshida, T. (2006). A short history of construction robots research & development in a Japanese company. Proceedings of the International Symposium on Automation and Robotics in Construction, 188-193.

Yu, X. (2020). Localization for autonomous construction vehicles using monocular camera and AprilTag [Thesis, KTH Royal Institute of Technology]. https://www.diva-portal.org/smash/get/diva2:1447361/FULLTEXT01.pdf

Zhang, K., Yan, J., & Chen, S-C. (2006). Automatic construction of building footprints from Airborne Lidar Data. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2523–2533. https://doi.org/10.1109/tgrs.2006.874137