STUDI PEFORMA SPUN PILE DENGAN PERKUATAN STEEL JACKET KE PILE CAP AKIBAT PEMBEBANAN SIKLIK HORIZONTAL

Main Article Content

Jansen Reagen
Mulia Orientilize
Widjojo Adi Prakoso
Yuskar Lase
Sidiq Purnomo

Abstract

Experimental and numerical studies were conducted on spun pile to pile cap connections with steel jacketing retrofitting due to cyclic loading. Experimental results show enhancement of spun pile to pile cap connection performance with enhancement of maximum lateral capacity of the connection by 18%; ductility by 5,2%; and seismic energy absorption by 22%. The failure modes found in the experiment were fractures in prestressed reinforcement as well as flexural and shear cracks which occurred at a height of 200 mm above the retrofitted area. In addition, debonding was found between the pile cap and steel jacketing which resulted in the pile lifting and damaging the pile cap. Numerical studies were carried out using ABAQUS 6.14 to analyze the behavior of retrofitting with perfectly bond interaction with the specimen. The proposed model was validated with experimental results and showed good resemblance. The results of numerical studies show that the lateral capacity will increase if perfectly bond interaction between the steel jacket and the specimen is applied. The results of numerical studies show a decrease in ductility which caused by the considerable contribution of zincalume material as a steel jacketing’s layer with non-ductile property.


Abstrak


Studi eksperimen dan numerikal dilakukan pada sambungan spun pile – pile cap dengan perkuatan steel jacketing akibat pembebanan siklik. Hasil studi eksperimen menunjukan peningkatan peforma sambungan spun pile – pile cap dengan tingkatan kapasitas lateral maksimum sambungan sebesar 18%; daktilitas sebesar 5,2%; dan serapan energi gempa sebesar 22%. Mode kegagalan yang ditemukan pada uji eksperimen berupa fracture pada tulangan prestressed serta flexural crack dan shear crack yang terjadi pada ketinggian 200 mm di atas area perkuatan. Selain itu, ditemukan debonding antara pile cap dan steel jacketing yang mengakibatkan tiang terangkat dan merusak pile cap. Studi numerikal dilakukan dengan menggunakan ABAQUS 6.14 untuk menganalisis perilaku perkuatan dengan interaksi perfectly bond dengan benda uji. Model yang diusulkan sebelumnya divalidasi terlebih dahulu dengan hasil eksperimen dan menunjukan kesesuaian yang baik. Hasil studi numerikal menunjukan bahwa kapasitas lateral akan meningkat jika interaksi perfectly bond antara steel jacket dan benda uji diterapkan. Adapun hasil studi numerikal menunjukan penurunan nilai daktilitas yang disebabkan oleh kontribusi cukup besar dari material zincalume sebagai lapisan steel jacketing dengan sifat tidak daktail.

Article Details

Section
Articles

References

American Concrete Institute. (2013). Guide for Teesting Reinforced Concrete Structural Elements under Slowly Applied Simulated Seismic Load (ACI 374.2R-13). https://www.concrete.org/store/productdetail.aspx?ItemID=374213&Language=English&Units=US_AND_METRIC

American Society of Civil Engineers. (2016). Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE 7-16). https://sp360.asce.org/PersonifyEbusiness/Merchandise/Product-Details/productId/233133882.

Badan Standardisasi Nasional. (2017). Persyaratan Perancangan Geoteknik (SNI 8460:2017). http://sispk.bsn.go.id/SNI/DaftarList

Badriah, R. M. S., & Imran, I. (2014). Kinerja Struktur Portal Terbuka Beton Bertulang Terhadap Beban Lateral. Jurnal Teknik Sipil, 10(2), 92-119.

Bang, J.-W., Oh, S.-J., Lee, S.-S., & Kim, Y.-Y. (2016). Pile-cap Connection Behavior Dependent on the Connecting Method between PHC pile and Footing. Journal of the Korea Institute for Structural Maintenance and Inspection, 20(3), 25–32. https://doi.org/10.11112/jksmi.2016.20.3.025

Guo, Z., He, W., Bai, X., & Chen, Y. F. (2017). Seismic performance of pile-cap connections of prestressed high-strength concrete pile with different details. Structural Engineering International, 27(4), 546–557. https://doi.org/10.2749/222137917X14881937845963

Ikeda, S., Tsubaki, T., & Yamaguchi, T. (1982). Ductility Improvement of Prestressed Concrete Piles. Transactions of the Japan Concrete Institute, 4, 531–538.

Irawan, C., Djamaluddin, R., Raka, I. G. P., Faimun, Suprobo, P., & Gambiro. (2018). Confinement behavior of spun pile using low amount of spiral reinforcement - An experimental study. International Journal on Advanced Science, Engineering and Information Technology, 8(2), 501–507. https://doi.org/10.18517/ijaseit.8.2.4343

Irawan, C., Djamaluddin, R., Raka, I. G. P., Faimun, Suprobo, P., & Gambiro. (2020). The effect of the presence of infilling concrete on flexural performance of spun pile – An experimental study. Jurnal Teknologi, 82(1), 85–94. https://doi.org/10.11113/jt.v82.11974

Irawan, C., Djamaluddin, R., Raka, I. G. P., & Suprobo, P. (2016). Experimental Investigation of Failure Mechanism of Spun Pile Due To Monotonic Loading Using Nehrp 2000. International Conference on Protective Structures (ICPS4), Beijing, China, October, 313–322.

Irawan, C., Suprobo, P., Gusti Putu Raka, I., & Djamaluddin, R. (2014). A review of prestressed concrete pile with circular hollow section (Spun pile). Jurnal Teknologi, 72(5), 115–123. https://doi.org/10.11113/jt.v72.3950

Joen, P. H. (1987). Seismic Performance of Prestresses Concrete Piles and Pile - Pile Cap Connections. 319.

Kaneko, O., Kawamata, S., Nakai, S., Sekiguchi, T., & Mukai, T. (2018). Analytical study of the main causes of damage to pile foundations during the 2011 off the Pacific coast of Tohoku earthquake. Japan Architectural Review, 1(2), 235–244. https://doi.org/10.1002/2475-8876.12033

Li, Y. F., Hwang, J. S., Chen, S. H., & Hsieh, Y. M. (2005). A study of reinforced concrete bridge columns retrofitted by steel jackets. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-Kuo Kung Ch’eng Hsuch K’an, 28(2), 319–328. https://doi.org/10.1080/02533839.2005.9670997

Mizuno, H., Iiba, M., & Hirade, T. (1996). Pile Damage During the 1995 Hyogoken-Nanbu Earthquake in Japan. In Proceedings of the 11th World Conference on Earthquake Engineering.

Nayal, R., & Rasheed, H. A. (2006). Tension Stiffening Model for Concrete Beams Reinforced with Steel and FRP Bars. Journal of Materials in Civil Engineering, 18(6), 831–841. https://doi.org/10.1061/(asce)0899-1561(2006)18:6(831)

Olmos, B., Jara, J. M., Gómez, G., & Martínez, G. (2019). Influence of steel jacket thickness on the RC bridges’ seismic vulnerability. Journal of Traffic and Transportation Engineering (English Edition), 6(1), 15–34. https://doi.org/10.1016/j.jtte.2018.09.004

R Park. (1989). Structural Assemblages From Laboratory Testing. Bulletin of the New Zealand National Society for Earthquake Engineering, 22(3), 155–166.

Reddiar, M. K. M. (2009). STRESS-STRAIN MODEL OF UNCONFINED AND CONFINED CONCRETE AND STRESS-BLOCK PARAMETERS. Pondicherry Engineering College.

Tandita, A. H., Lase, Y., Prakoso, W. A., & Orientilize, M. (2021). The Numerical Study Of Spun Pile To Pile Cap Connection With Reinforced Concrete Infill Under Cyclic Loading. Angewandte Chemie International Edition, 6(11), 951–952., 2013–2015.

Thompson, K. J., & Park, R. (1978). Stress-Strain Model for Grade 275 Steel With Cyclic Loading. Bulletin of the New Zealand National Society for Earthquake Engineering, 11(4), 209–218. https://doi.org/10.5459/bnzsee.11.4.209-218

Yang, Z., Li, G., & Nan, B. (2020). Study on Seismic Performance of Improved High-Strength Concrete Pipe-Pile Cap Connection. Advances in Materials Science and Engineering, 2020. https://doi.org/10.1155/2020/4326208