PERENCANAAN SISTEM PENUNJANG UNTUK MENGATASI PENAMBAHAN DEFORMASI DINDING DIAFRAGMA PADA PROYEK GALIAN BASEMEN

Main Article Content

Monica Michelle Susanto
Alfred Jonathan Susilo

Abstract

Although has been widely used, cases of diaphragm wall collapse in basemen excavation project still occur sometimes. The collapse of diaphragm wall usually preceded by excessive lateral deformation of the diaphragm wall. This study discussed a case of excessive lateral deformation of the diaphragm wall in a 12 meter deep excavation project. Excessive deformation occurs when the excavation is at -11 meter depth. The amount of deformation occurred is 86.17 mm, while the allowable deformation limit is 84 mm. To prevent the wall from collapsing, excavation support system will be installed with ground anchor and strut as the options. Based on the analysis result, ground anchor can reduce the lateral deformation to 63.32 mm, while struts can reduce the lateral deformation to 67.72 mm. Thus, ground anchor will be recommended as the main option because it generates smaller deformation. However, the length of ground anchor required is very large and shall be installed outside project area so there is a possibility that ground anchor can not be applied. Although struts generates greater deformation than ground anchor, struts is recommended as a backup option that can be used because the struts components are only installed inside the excavation hole.


Abstrak


Meskipun telah sering digunakan, kasus kegagalan dinding diafragma pada galian basemen masih kerap terjadi. Keruntuhan dinding diafragma biasanya diawali dengan penambahan deformasi lateral yang berlebihan hingga dinding akhirnya runtuh. Penelitian ini membahas salah satu kasus deformasi berlebihan dinding diafragma pada suatu poyek galian sedalam 12 meter. Deformasi berlebihan terjadi ketika galian mencapai elevasi -11 meter. Deformasi yang terjadi adalah 86.17 mm sementara batas defleksi yang diizinkan adalah 84 mm. Untuk mencegah keruntuhan dinding, perbaikan akan dilakukan dengan menambahkan sistem penunjang (support system). Opsi sistem penunjang yang akan dipasang berupa ground anchor dan struts. Berdasarkan hasil analisis, ground anchor dapat mengurangi deformasi dinding menjadi 63.32 mm, sedangkan struts dapat mengurangi deformasi dinding menjadi 67.72 mm. Dengan demikian, ground anchor menjadi opsi utama yang direkomendasikan karena menghasilkan deformasi yang paling kecil. Akan tetapi, panjang komponen ground anchor yang diperlukan cukup besar hingga harus dipasang di luar lahan milik proyek. Akibatnya, terdapat kemungkinan ground anchor tidak dapat dipasang dan harus diambil opsi lain untuk mengantisipasi hal tersebut. Meskipun deformasi yang dihasilkan struts lebih besar dibandingkan ground anchor, komponen struts hanya dipasang di dalam lahan proyek. Dengan demikian, struts direkomendasikan sebagai opsi cadangan untuk digunakan apabila ground anchor tidak dapat diterapkan pada proyek.

Article Details

Section
Articles

References

Badan Standardisasi Nasional. (2017). Persyaratan Perancangan Geoteknik (SNI 8460:2017). http://sispk.bsn.go.id/SNI/DaftarList.

Bahrami, M. (2019, November). Strut Design of Deep Excavation: Theory and Solved Example. Diambil kembali dari ResearchGate: https://www.researchgate.net/publication/337245335_Strut_Design_of_Deep_Excavation_Theory_and_Solved_Example

British Standards Institution. (1989). BS 8081:1989 British Standard Code of Practice for Ground Anchorages. British Standards Institution.

Das, B. M. (2011). Principles of Foundation Engineering, SI Seventh Edition. Cengage Learning.

Federal Highway Administration. (1999). Geotechnical Engineering Circular No. 4 : Ground Anchors and Anchored Systems. U.S. Department of Transportation.

Ou, C. Y. (2006). Deep Excavation : Theory and Practice. Taylor & Francis.

Peck, R. B. (1969). Deep Excavation and Tunneling in Soft Ground. Proceedings Seventh International Conference on Soil Mechanics and Foundation Engineering (hal. 225-290). State-of-the-Art Volume.

Puzrin, A. M., Alonso, E. E., & Pinyol, N. M. (2010). Braced Excavation Collapse: Nicoll Highway, Singapore. Geomechanics of Failures, 151-181.

Rankine, W. M. (1857). On Stability on Loose Earth . Philosopic Transactions of Royal Society, 9-27.