PENGECEKAN PENAMPANG FONDASI TIANG TERHADAP FENOMENA LIKUIFAKSI AKIBAT GEMPA
Main Article Content
Abstract
Liquefaction is a phenomenon that can cause failure of the foundation. One type of foundation used is a pile foundation and it is necessary to check the effect of liquefaction. Checking the cross section of the pile foundation against the influence of liquefaction is done by varying the size and geometry of the cross section. First, check the liquefaction potential of the soil layer. Then, the axial bearing capacity is calculated without and with the influence of liquefaction. After that, the finite difference analysis on the foundation is carried out with the help of the program to obtain the lateral displacements and internal forces of the pile followed by control of the permissible lateral displacement and the capacity of the pile foundation. The results show that the foundation has failed axial bearing capacity and does not meet the requirements for moment capacity. After increasing the number of piles, the lateral displacements and shears for drilled shafts with a diameter of 1000 mm in all column positions meet the requirements for the permissible shear and lateral displacement capacities. In addition, driven piles with dimensions of 350 x 350 mm and 500 x 500 mm only meet the requirements for shear capacity.
Abstrak
Likuifaksi merupakan fenomena yang dapat menyebabkan kegagalan pada fondasi. Salah satu jenis fondasi yang digunakan adalah fondasi tiang dan perlu dilakukan pengecekan terhadap pengaruh likuifaksi. Pengecekan penampang fondasi tiang terhadap pengaruh likuifaksi dilakukan dengan melakukan variasi terhadap ukuran dan geometri penampang. Pertama, dilakukan pengecekan potensi likuifaksi dari lapisan tanah. Kemudian, dilakukan perhitungan daya dukung aksial tanpa dan dengan pengaruh likuifaksi. Setelah itu, analisis beda hingga pada fondasi dilakukan dengan bantuan program untuk mendapatkan perpindahan lateral dan gaya-gaya dalam tiang yang dilanjutkan dengan kontrol terhadap perpindahan lateral yang diizinkan dan kapasitas dari fondasi tiang. Hasil menunjukkan bahwa fondasi mengalami kegagalan daya dukung aksial dan tidak memenuhi syarat untuk kapasitas momen. Setelah dilakukan penambahan jumlah tiang, perpindahan lateral dan geser untuk tiang bor dengan diameter 1000 mm di semua posisi kolom memenuhi persyaratan kapasitas geser dan perpindahan lateral yang diizinkan. Selain itu, tiang pancang dengan dimensi 350 x 350 mm dan 500 x 500 mm hanya memenuhi persyaratan untuk kapasitas geser.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under Jurnal Mitra Teknik Sipil (JMTS) Creative Commons Attribution-ShareAlike 4.0 International License.References
Badan Standardisasi Nasional. (2017). Persyaratan Perancangan Geoteknik (SNI 8460:2017). http://sispk.bsn.go.id/SNI/DaftarList
Badan Standardisasi Nasional. (2019). Persyaratan Beton Struktural untuk Bangunan Gedung dan Penjelasan (SNI 2847:2019). http://sispk.bsn.go.id/SNI/DaftarList.
Badan Standardisasi Nasional. (2019). Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Nongedung (SNI 1726:2019). http://sispk.bsn.go.id/SNI/DaftarList.
Bray, J. D., & Sancio, R. B. (2006). Assessment of the Liquefaction Susceptibility of Fine-Grained Soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(9), 1165-1177.
Bray, J. D., Sancio, R. B., Riemer, M., & Durgunoglu, H. T. (2004b). Liquefaction Susceptibility of Fine-grained Soils. Proceedings of the 11th International Conference on Soil Dynamics and Earthquake Engineering and 3rd International Conference on Earthquake Geotechnical Engineering (pp. 655-662). Stallion Press.
Coyle, H. M., & Castello, R. R. (1981). New Design Correlations for Piles in Sand. Journal of the Geotechnical Engineering Division, 107(7), 965-986.
Idriss, I. M., & Boulanger, R. W. (2008). Soil Liquefaction during Earthquakes. Earthquake Engineering Research Institute.
Japan Road Association. (1996). Design Specifications of Highway Bridges, Part V Seismic Design.
Kulhawy, F. H. (1991). Drilled Shaft Foundations. in H. Y. Fang, Foundation Engineering Handbook (pp. 537-552). New York.
Meyerhof, G. G. (1976). Bearing Capacity and Settlement of Pile Foundations. Journal of the Geotechnical Engineering Division, 102(3), 197-228.
Reese, L. C., & Wright, S. J. (1977). Drilled Shaft Design and Construction Manual. U.S. Department of Transportation.
Seed, H. B., & Idriss, I. M. (1971). A Simplified Procedure for Evaluating Soil Liquefaction Potential. Journal of the Soil Mechanics and Foundations, 97(9), 1249-1273.
Seed, H. B., & Idriss, I. M. (1982). Ground Motions and Soil Liquefaction during Earthquakes. Earthquake Engineering Research Institute Monograph.
Seed, R. B., Cetin, K. O., Moss, R. E., Kammerer, A. M., Wu, J., Pestana, J. M., . . . Faris, A. (2003). Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framework. 26th Annual ASCE Los Angeles Geotechnical Spring Seminar. Keynote Presentation.
USGS. (t.thn.). Search Earthquake Catalog. Dipetik 6 Maret, 2022, dari USGS: https://earthquake.usgs.gov/earthquakes/search/
Wijaya Karya Beton. (2017). PC PILES [Brosur]. Wijaya Karya Beton.
Youd, T. L., Hansen, C. M., & Bartlett, S. F. (2002). Revised Multilinear Regression Equations for Prediction of Lateral Spread Displacement. Journal of Geotechnical and Geomechanical Engineering, 128(12), 1007-1017.