PENGARUH UKURAN BUTIRAN MAKSIMUM TERHADAP KUAT TEKAN REACTIVE POWDER CONCRETE

Main Article Content

Arianti Sutandi
Widodo Kushartomo

Abstract

Kuat tekan beton merupakan faktor yang paling dominan untuk menentukan kualitas beton dibandingkan faktor lainnya. Kuat tekan beton atau mutu beton dipengaruhi oleh beberapa faktor diantaranya adalah perbandingan semen terhadap air (fa/s), kualitas material, perbandingan komposisi material dan sebagainya. Gradasi butiran agregat  juga merupakan salah satu faktor yang berperan penting untuk menentukan mutu beton. Agregat dengan ukuran butiran yang lebih halus dan bervariasi dapat memperkecil volume pori yang terbentuk, sehingga susunan butiran yang baik akan menghasilkan kepadatan tinggi dan porositas minimum. Pada penelitian ini dipelajarai pengaruh ukuran butiran maksimum agregat halus terhadap  kuat tekan reactive powder concrete. Benda uji dibuat dalam bentuk silinder dengan diameter 100,0 mm dan tinggi 200,0 mm. Ukuran diameter maksimum agergat halus dibuat dalam tiga jenis yaitu 300 µm. 425 µm, dan 600 µm. Seluruh benda uji dirawat dengan teknik perendaman selama 3 hari, dilanjutkan dengan steam curing pada temperature 90 oC – 95 oC selama 4 jam. Pengujian kuat tekan dilakukan pada umur 7 hari. Hasil pengujian menunjukkan terjadinya peningkatan kuat tekan recative powder concrete dengan bertambah kecilnya ukuran butiran maksimum agregat halus.

 

The compressive strength of concrete is the most dominant factor to determine concrete quality compared to other factors. Concrete compressive strength and grade are influenced by several factors, including water cement ratio (fa/s), material quality, material composition, and others. Aggregate gradation is also one of the dominant factors that play an important role in determining the quality of concrete. Finer and varied aggregate size can reduce void volume, so that a good granular structure will produce high density and minimum porosity. In this research, the effect of maximum size of fine aggregate on the compressive strength of reactive powder concrete was studied. The specimens were made in cylindrical shapes with a diameter of 100.0 mm and a height of 200.0 mm. The maximum diameter size of fine agergate was varied in three types, 300 µm. 425 µm, and 600 µm. All specimens were treated with immersion technique for 3 days, followed by steam curing at 90 oC - 95 oC for 4 hours. Compressive strength testing was done at the age of 7 days. The test results showed that the increase of maximum fine aggregate size increase the compressive strength of reactive powder concrete.

Article Details

Section
Articles

References

Ahmad, S. Zubair, A. Maslehuddin, M. (2015). Effect of key mixture parameters on flow and mechanical properties of reactive powder concrete, Construction and Building Materials, 99, 73-81.

Chang, Ping-Kun (2004). An approach to optimizing mix design for properties of high-performance concrete, Cement and Concrete Research, 34(4), 623-629

Graybeal, Benjamin A. (2007), Compressive Behavior of Ultra-High- Performance Fiber-Reinforced Concrete, ACI Materials Journal, March- April.

Hiremath, Parameshwar N. and Yaragal, Subhash C. (2017). Effect of different curing regimes and durations on early strength development of reactive powder concrete, Construction and Building Materials 154, 72-87.

Hong-seok Jang, Hyoung-seok So, Seungyoung So (2016). The Properties Of Reactive Powder Concrete Using PP Fiber And Pozzolanic Materials At Elevated Temperature, Journal of Building Engineering, 8, 225-230.

Hou, X., Abid, M., Zheng, W., Waqar, Ghulam Q. (2017), Evaluation of residual mechanical properties of steel fiber-reinforced reactive powder concrete after exposure to high temperature using nondestructive testing, Procedia Engineering, 210, 588-596.

JU, Yang, Liu, Jinhui, Liu, Hongbin, Tian, Kaipei, Ge, Zhishun (2016). On the thermal spalling mechanism of reactive powder concrete exposed to high temperature: Numerical and experimental studies, International Journal of Heat and Mass Transfer,98, 493-507

JU, Yang. Tian, Kaipei. Liu, Hongbin. Hans-Wolf Reinhardt. Wang, Li (2017). Experimental investigation of the effect of silica fume on the thermal spalling of reactive powder concrete, Construction and Building Materials, 155, 571-583

Kamen, Aicha,(2007),“Thermal Effects on Physico-Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete, ACI Materials Jurnal,July-Agustus pp 414-423.

Khadiranaikar R.B.; S.M., Muranal (2012), Factor affecting the strength of reactive powder concrete (RPC), International Journal Of Civil Engineering And Technology (Ijciet), vol 3, July – Dec, pp. 455 – 464.

Mindess, Sidney and Young, J. Francis (1981). Concrete. Prentice-Hall, INC, New Jersey.

Neville, A.M. (2012). Properties of Concrete. Prentice-Hall, INC, New Jersey.

Phuoc, HUYNH Trong and Lung, HWANG Chao (2018). An Assessment of Characteristics of Densified High-Performance Concrete Incorporating High Volume Fly Ash, Material Science Forum, ISSN: 1662-9752, 923, 109-109.

Purwati, A., As’ad, S., Sunarmasto (2014). Pengaruh Ukuran Butiran Agregat Terhadap Kuat Tekan Dan Modulus Elastisitas Beton Kinerja Tinggi Grade 80, e-Jurnal Matriks Teknik Sipil, Vol. 2 No. 2, ISSN 2354-8630, 58-63.