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ABSTRAK

Penelitian ini bertujuan untuk menentukan model
machine learning paling efektif untuk klasifikasi
lingkungan tektonik (tectonic setting) berdasarkan
komposisi geokimia. Menggunakan dataset dari database
GEOROC, tiga algoritma gradient boosting XGBoost,
LightGBM, dan CatBoost diuji melalui beberapa
skenario, termasuk pembagian data 70:30 dan 80:20.
Model dengan kinerja terbaik kemudian dioptimalkan
menggunakan Grid Search Cross-Validation
(GridSearchCV). Hasil menunjukkan bahwa model
LightGBM, setelah melalui proses hyperparameter tuning
pada skenario 80:20, mencapai performa tertinggi
dengan akurasi 80,87%. Analisis kepentingan fitur
(feature importance) lebih lanjut mengidentifikasi bahwa
Al:Os (Aluminium Oksida), Na:O (Natrium Oksida), dan
FeOT (Besi Oksida Total) merupakan tiga prediktor
paling  signifikan. Studi ini membuktikan bahwa
LightGBM adalah pendekatan yang superior dan andal
untuk tugas klasifikasi geokimia otomatis.
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1. Pendahuluan

Klasifikasi lingkungan tektonik (tectonic setting)
merupakan salah satu langkah penting dalam ilmu geologi
karena dapat digunakan untuk merekonstruksi proses
geodinamika pembentukan batuan, mulai dari evolusi
kerak bumi hingga pembentukan cadangan mineral [1].
Analisis geokimia sendiri telah terbukti menjadi alat yang
ampuh untuk mengidentifikasi aktivitas tektonik,
misalnya melalui karakteristik fluida panas bumi di zona
patahan aktif [2]. Secara tradisional, para ahli geologi
mengandalkan sebuah diagram diskriminasi berbasis
indikator geokimia untuk melakukan klasifikasi tersebut
[3]. Namun, di era big data dimana volume data yang
sangat besar, metode konvensional tersebut menghadapi
tantangan besar. Basis data geokimia global seperti
GEOROC kini menyediakan ratusan ribu analisis sampel,
sebuah volume data yang membuat analisis manual
dengan diagram menjadi tidak efisien dan rentan terhadap

ambiguitas interpretasi akibat tumpang tindih antar area
geokimia [4].

Menjawab tantangan tersebut, machine learning telah
muncul sebagai suatu pendekatan yang kuat untuk
klasifikasi batuan secara otomatis dan objektif [5].
Kemampuan machine learning untuk mengenali pola
kompleks dalam dafaset multidimensi menjadikannya
solusi ideal untuk analisis geokimia modern. Pendekatan
berbasis data (data-driven) kini menjadi praktik umum
untuk menyelesaikan masalah klasifikasi di ilmu geologi,
mulai dari klasifikasi status erupsi gunung berapi,
prediksi magnitudo gempa bumi [6], prediksi fasies
sedimen [7], di mana hasilnya terbukti mampu melampaui
metode-metode statistik konvensional.

Di antara berbagai algoritma yang ada, algoritma
seperti LightGBM, XGBoost, dan CatBoost diakui
sebagai model yang sering menjadi subjek studi
perbandingan untuk menentukan metode paling superior
dalam  menyelesaikan  tugas-tugas prediksi  [8].
Keunggulan model-model ini tidak hanya terbukti dalam
domain geologi [7], tetapi juga di bidang lain yang
menuntut akurasi tinggi seperti prediksi risiko kredit di
industri keuangan [9]. Meskipun studi komparatif
semacam ini telah dilakukan untuk berbagai aplikasi
geologi, perbandingan kinerja secara langsung antara
ketiganya untuk klasifikasi lingkungan tektonik batuan
vulkanik secara spesifik menggunakan dataset berskala
besar masih menjadi area yang perlu dieksplorasi lebih
dalam.

Oleh karena itu, penelitian ini bertujuan untuk
melakukan perbandingan kinerja secara sistematis antara
algoritma boosting yaitu LightGBM, XGBoost, dan
CatBoost menggunakan data dari yang bersumber dari
database  GEOROC. Kinerja model akan dievaluasi
berdasarkan metrik akurasi untuk mengidentifikasi
algoritma mana yang menjadi terbaik. Hasil dari
penelitian ini diharapkan dapat memberikan rekomendasi
metode komputasi terbaik untuk analisis geokimia
otomatis, yang dapat membantu para ahli geologi dalam
proses interpretasi data yang lebih cepat dan objektif serta
menjadi referensi penelitian di kemudian hari.
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2. Metode Penelitian
2.1. Sumber Data

Penelitian ini menggunakan dataset geokimia
batuan vulkanik yang diperoleh dari The GEOROC
Database (Geochemistry of Rocks of the Oceans and
Continents), yaitu basis data terbuka yang berisi hasil
analisis kimia batuan beku (igneous) dan metamorf dari
berbagai wilayah di dunia. GEOROC merupakan salah
satu sumber data geokimia terpercaya dan lengkap,
mencakup lebih dari 23.000 publikasi ilmiah, 697.000
sampel, dan 40 juta nilai data individual, yang tersedia
secara bebas dibawah lisensi Creative Commons (CC BY -
SA 4.0) [5].

Dataset spesifik yang digunakan bersumber dari
kumpulan data oleh Qin et al. (2022) yang berjudul
“Global mantle clinopyroxene data (major and trace
elements) ”, diterbitkan melalui GFZ Data Services [10].
Dataset tersebut diunduh dalam format Excel (.xlsx)
dengan total 21.600 baris data mentah sebelum dilakukan
pembersihan. Setiap entri mewakili satu sampel batuan
vulkanik dengan informasi kandungan unsur utama
seperti Si0z, TiO2, Al:Os, FeOt, MgO, CaO, Na.O, Cr:0s,
dan MnO (dalam persen berat/wt%), serta label
lingkungan tektonik (tectonic setting) seperti Intraplate
Volcanics, Ocean Island, Convergent Margin,
Continental Flood Basalt, Rift Volcanics, Archean
Craton, Oceanic Plateau, Seamound , Complex Volcanic
Settings, dan Submarine Ridge. Untuk jumlah distribusi
Kelas Tectonic Setting dapat dilihat pada Tabel 1 sebagai
berikut.

Tabel 1 Distribusi Kelas Tektonic Sebelum Penggabungan

Tectonic Setting Jumlah
Intraplate Volcanics 11.371
Ocean Island 3414
Convergent Margin 2.830
Continental Flood Basalt 1.640
Rift Volcanics 1.493
Archean Craton 253
Oceanic Plateu 193
Seamount 182
Complex Volcanic Settings 73
Submarine Ridge 6

2.2. Pra-pemrosesan Data

Tahap pra-pemrosesan data bertujuan untuk
mentransformasi data mentah menjadi format yang
bersih, terstruktur, dan siap untuk pemodelan machine
learning. Proses ini meliputi pembersihan data,
penanganan nilai hilang, penyederhanaan kelas, serta
normalisasi fitur.

Langkah pertama adalah pembersihan data (data
cleaning). Dari total 21.600 entri data mentah, semua
baris yang tidak memiliki label fectonic setting dihapus.
Selanjutnya, dilakukan seleksi fitur dengan hanya
mempertahankan sembilan atribut kimia utama yaitu
SiOz, TiOz, A1203, FGOT, MgO, CaO, Na20, CI‘zOz, dan
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MnO. Data kosong (missing values) yang terdapat pada
fitur-fitur tersebut diisi (diimputasi) menggunakan nilai
median dari masing-masing kolom. Metode median
dipilih karena lebih robust terhadap nilai ekstrim
(outliers). Selain itu, satu entri data dengan nilai
TIO2(WT%) yang sangat tinggi (dianggap outlier) juga
dihapus untuk menjaga integritas statistik dataset. Outlier
dapat terlihat pada Gambar 1.

TIO2(WT%)

50 55
SI02(WT%)

Gambar 1. Outlier pada Dataset

Langkah berikutnya adalah penyederhanaan kelas
target untuk mengatasi ketidakseimbangan distribusi.
Beberapa kelas dengan jumlah sampel yang sangat sedikit
(kurang dari 1,5% dari total data), yaitu Archean Craton,
Oceanic Plateau, Seamount, Complex Volcanic Settings,
dan Submarine Ridge, digabungkan menjadi satu kelas
baru berlabel “Others”. Langkah ini bertujuan agar model
bisa lebih stabil saat pelatihan dan mencegah bias
terhadap kelas-kelas yang dominan. Persebaran distribusi
data per kelas tektonik secara setelah digabungkan dapat
dilihat jumlah angka spesifiknya pada Tabel 2 sebagai
berikut.

Tabel 2 Distribusi Kelas Tektonik Setelah Penggabungan

Tectonic Setting Jumlah
Intraplate Volcanics 11.371
Ocean Island 3414
Convergent Margin 2.830
Continental Flood Basalt 1.640
Rift Volcanics 1.493
Others 707

Kemudian untuk perbandingan distribusi kelas
Tectonic  Setting ketika sebelum dan sesudah
penggabungan kelas minoritas menjadi kelas Others
dapat dilihat pada Gambar 2 dan Gambar 3.

Distribusi Tectonic Setting

i

Gambear 2. Distribusi Jumlah Data per Kelas Tektonik
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Distribusi Tectonic Setting (Setelah Penggabungan)
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Gambar 3. Distribusi Data setelah Penggabungan

Diagram ini menunjukkan perbandingan jumlah
sampel untuk setiap kategori lingkungan tektonik
sebelum (Gambar 1) dan sesudah (Gambar 2)
penggabungan kategori minor ke dalam kelas Others.

Setelah data bersih, dilakukan normalisasi fitur
menggunakan StandardScaler dari scikit-learn agar setiap
fitur memiliki skala yang seragam (rata-rata 0 dan standar
deviasi 1). Terakhir, dataset dibagi menjadi data latih
(training set) dan data vji (testing set) dengan dua skema
proporsi, yaitu 70:30 dan 80:20. Pembagian ini dilakukan
secara stratified, yang memastikan proporsi setiap kelas
tektonik tetap terjaga baik di data latih maupun data uji,
sehingga evaluasi model menjadi lebih objektif dan dapat
diandalkan.

2.3. Extreme Gradient Boost (XGBoost)

XGBoost merupakan algoritma gradient boosting
yang dirancang untuk efisiensi dan akurasi tinggi.
Algoritma ini bekerja dengan membangun serangkaian
model pohon keputusan (decision tree) secara sekuensial.
Setiap pohon baru dibuat untuk memperbaiki kesalahan
prediksi (residual errors) dari kombinasi pohon
sebelumnya [11]. Proses ini berfokus pada contoh yang
salah diklasifikasikan, menghasilkan model prediksi akhir
yang kuat dan akurat [12].

Salah satu keunggulan utama yang membedakan
XGBoost dari implementasi gradient boosting lainnya
adalah mekanisme regularisasi yang terintegrasi secara
canggih untuk mencegah overfitting. Teknik regularisasi
ini secara efektif mengontrol kompleksitas model dengan
memberikan penalty pada pohon yang tumbuh terlalu
rumit, misalnya dengan membatasi jumlah daun atau
kedalaman pohon [13]. Selain itu, XGBoost secara
internal mengoptimalkan performa komputasi dengan
menyederhanakan  fungsi  objektifnya. Hal ini
memungkinkan penggabungan antara aspek prediktif
(seberapa baik model cocok dengan data) dan aspek
regularisasi (seberapa kompleks modelnya) dalam satu
perhitungan yang efisien, sehingga tetap
mempertahankan kecepatan komputasi yang optimal
bahkan pada dataset berskala besar[13].

Struktur pohon keputusan pada XGBoost sendiri
terdiri dari node bagian dalam yang merepresentasikan
pengujian pada sebuah atribut (fitur), dan leaf node (daun)
yang merepresentasikan skor akhir dari sebuah keputusan
atau prediksi [14]. Secara lebih mendalam, proses

pembelajaran aditif pada XGBoost tidak hanya berfokus
pada residu sederhana, tetapi juga memanfaatkan turunan
pertama (Gradien) dan kedua (Hessian) dari fungsi
kerugian. Penggunaan informasi gradien orde kedua ini
memungkinkan algoritma untuk melakukan optimasi
yang lebih presisi dan cepat menuju titik minimal dari
fungsi objektif. Hal ini memberikan keuntungan
signifikan dibandingkan implementasi gradient boosting
tradisional yang hanya menggunakan gradien orde
pertama. Dengan demikian, XGBoost dapat secara efektif
menemukan arah dan besaran perbaikan yang paling
optimal pada setiap langkah, menghasilkan konvergensi
yang lebih cepat dan model yang sering kali lebih akurat.

2.3.1. Fungsi Prediksi:

Hasil prediksi (¥;) untuk sebuah data (x;) adalah
jumlah skor dari K pohon keputusan yang telah dibangun,
seperti ditunjukkan pada persamaan berikut :

k
9:= > feldfi € F (1)
k=1

Dimana f}, adalah satu pohon keputusan independen.
Untuk membangun model ini, XGBoost bekerja dengan
cara meminimalkan sebuah fungsi objektif. Fungsi ini
secara cerdas menyeimbangkan antara seberapa baik
model cocok dengan data latih dan seberapa kompleks
model tersebut.

2.3.2. Fungsi Objektif:

Tujuan fungsi ini adalah untuk mengukur apakah
model tersebut cocok sebagai set data latih dan
menentukan kompleksitas model. Fungsi objektif (Obj)
yang diminimalkan oleh XGBoost terdiri dari dua
komponen utama: fungsi kerugian (loss function) dan
fungsi regularisasi (regularization function).

0bj(6) = L(6) + 2(6) (2)
Dimana Obj(0) sebagai fungsi objektif, L(8)
sebagai pengukur selisih aktual dengan hasil prediksi,
£(6) untuk mengontrol kompleksitas model.

2.3.3. Fungsi Regularisasi:

Komponen regularisasi inilah yang menjadi kunci

kekuatan XGBoost dalam mengontrol overfitting.
Fungsinya didefinisikan sebagai berikut:
1 T
Q) =1T+52Y W ()
j=1

Fungsi regularisasi ini mengukur kompleksitas
model, di mana T adalah jumlah total daun (leaves) pada
sebuah pohon dan w; adalah skor (bobot) yang diberikan



pada setiap daun. Besarnya penalty dikontrol oleh
parameter regularisasi y dan A . Penalty diberikan jika
pohon menjadi terlalu kompleks dengan memiliki terlalu
banyak daun, atau jika skor pada daun memiliki bobot
yang terlalu ekstrim.

2.4. Light Gradient Boosting Machine (LightGBM)

LightGBM (Light Gradient Boosting Machine)
adalah implementasi kerangka kerja gradient boosting
yang dikembangkan oleh Microsoft, dirancang secara
khusus untuk meningkatkan efisiensi dan kecepatan
pelatihan pada dataset berukuran besar [15]. Seperti
algoritma boosting lainnya, LightGBM bekerja dengan
membangun model pohon keputusan (decision tree)
secara bertahap, di mana setiap model baru (weak learner)
ditambahkan untuk memperbaiki kesalahan prediksi dari
kombinasi model sebelumnya [16]. Proses pembaruan
model pada LightGBM mengikuti prinsip dasar gradient
boosting dapat dilihat pada penjelasan berikut.

2.4.1. Fungsi Prediksi:

Fungsi prediksi pada setiap iterasi diperbarui
dengan menambahkan pohon keputusan baru. Dalam
persamaan ini, F,,(x) adalah fungsi prediksi pada iterasi
ke-m, F,,_,(x) adalah fungsi dari iterasi sebelumnya,
h,,(x)adalah pohon keputusan baru, 1 dan adalah
learning rate yang mengontrol besarnya kontribusi dari
pohon baru tersebut.

Fn(X) = Fnoa () + 1 - hipn(x) 4)
2.4.2. Fungsi Objektif:

Seperti XGBoost, tujuan optimasi LightGBM
adalah meminimalkan fungsi objektif yang terdiri dari dua
komponen utama: fungsi kerugian (loss function) yang
mengukur kesalahan prediksi, dan fungsi regularisasi
yang mengontrol kompleksitas model untuk mencegah
overfitting [17].

n

Obj = Z

T
LyLg+ Y. g ()
i=1 t=1
Dalam persamaan ini, L(yi,yi1) adalah fungsi
kerugian antara label aktual yi,dan prediksi model i
sedangkan ((ft) adalah fungsi regularisasi yang
memberikan penalty pada kompleksitas pohon.

2.4.3. Inovasi Utama LightGBM:

Kecepatan dan efisiensi LightGBM yang superior
berasal dari  beberapa teknik  inovatif yang
membedakannya dari implementasi boosting lainnya.
Dua yang paling signifikan yaitu yang pertama Gradient-
based One-Side Sampling (GOSS) dimana berbeda dari
metode yang menggunakan seluruh data iterasi, GOSS
memilih sebagian data untuk membangun pohon
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keputusan. Teknik ini mempertahankan semua data yang
sulit diprediksi (dengan nilai gradien tinggi) dan hanya
mengambil sebagian kecil data acak dari sampel yang
mudah diprediksi(dengan nilai gradien rendah).
Pendekatan ini secara signifikan menurunkan beban
komputasi tanpa kehilangan informasi penting dari
distribusi data.

Kemudian yang kedua adalah Exclusive Feature
Bundling (EFB) untuk mengatasi dataset dengan banyak
fitur, EFB menjadi pendekatan yang efisien. Teknik ini
mengurangi jumlah fitur dengan cara menggabungkan
fitur-fitur yang bersifat mutually exclusive (jarang
memiliki nilai bukan nol secara bersamaan) menjadi satu
bundle fitur tunggal. Proses ini secara efektif mengurangi
kompleksitas tanpa kehilangan banyak informasi,
sehingga mempercepat proses pelatihan secara signifikan.

2.4.4. Struktur Pohon leaf Wise:

Berbeda dengan XGBoost yang membangun
pohon secara level-wise (semua cabang pada satu level
dikembangkan bersamaan), LightGBM menggunakan
strategi leaf-wise. Strategi ini mampu menghasilkan
model dengan akurasi lebih tinggi yang akan memberikan
pengurangan loss terbesar. Meskipun pendekatan ini
dapat menghasilkan pohon yang lebih akurat, ia berisiko
menyebabkan overfitting pada dataset kecil, sehingga
memerlukan pengaturan parameter seperti max_depth
dengan cermat.

Berkat inovasi-inovasi tersebut, LightGBM
menawarkan keunggulan berupa waktu pelatihan yang
jauh lebih cepat dan konsumsi memori yang lebih rendah
dibandingkan boosting lainnya, menjadikannya sangat
cocok untuk analisis dataset geokimia berskala besar[16].

2.5. Categorical Boosting (CatBoost)

CatBoost (Categorical Boosting) adalah algoritma
gradient boosting modern yang dikembangkan oleh
Yandex. Algoritma ini dirancang secara spesifik untuk
memberikan performa unggul dengan mengatasi dua
tantangan utama dalam machine learning yaitu
penanganan fitur kategorikal yang efisien dan pencegahan
overfitting [18]. Seperti implementasi gradient boosting
lainnya, CatBoost menggunakan pohon keputusan biner
(binary decision tree) sebagai model dasar (base learner)
yang dibangun secara sekuensial untuk memperbaiki
kesalahan dari model sebelumnya [19].

Inovasi utama yang membedakan CatBoost adalah
implementasi ordered boosting, sebuah variasi dari skema
gradient boosting klasik yang secara signifikan lebih
robust terhadap overfitting, terutama pada dataset
berukuran kecil [18]. Selain itu, CatBoost memiliki
metode internal untuk menentukan tingkat kepentingan
fitur, di mana Prediction Values Change (PVC) menjadi
metode default untuk mengukur kontribusi setiap fitur
[20].

Secara fundamental, CatBoost tetap mengikuti
prinsip dasar gradient boosting, di mana model dibangun
secara bertahap dengan memperbarui fungsi prediksi pada
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setiap iterasi untuk terus-menerus meminimalkan
kesalahan.

2.5.1. Fungsi Prediksi:

CatBoost membangun model prediktifnya melalui
proses yang bersifat aditif dan iteratif. Model tidak
dibangun sekaligus, melainkan disempurnakan secara
bertahap. Pada setiap iterasi, sebuah model dasar baru
dalam hal ini, pohon keputusan ( h,,(x)) dilatih secara
spesifik untuk memperbaiki kesalahan atau residu yang
ditinggalkan oleh kombinasi model dari semua iterasi
sebelumnya. Pohon baru ini kemudian ditambahkan ke
dalam ensemble dengan bobot tertentu yang diatur oleh
learning rate ().

Persamaan pembaruan model ini secara matematis
merangkum proses tersebut. Dalam persamaan ini,
F,,(x) adalah fungsi prediksi akhir setelah iterasi ke-m,
yang merupakan hasil dari fungsi prediksi sebelumnya,
Fpn_1(x), ditambah dengan kontribusi dari pohon
keputusan baru, h,(x). Parameter atau learning rate
memainkan peran krusial dalam mengontrol seberapa
besar dampak dari setiap pohon baru, di mana nilai yang
lebih kecil membuat proses pembelajaran lebih lambat
namun lebih robust terhadap overfitting.

Fn(x) = Fpoi(x) + 1 - o Ry (%) (6)
2.5.2. Loss Function:

Tujuan utama dari setiap iterasi dalam algoritma
CatBoost adalah untuk menemukan pohon Keputusan
h,, (x;) yang paling optimal. Optimal dalam pembahasan
ini berarti pohon yang, ketika ditambahkan ke model,
mampu menghasilkan penurunan kesalahan prediksi yang
paling signifikan. Proses pencarian ini dipandu oleh
sebuah fungsi kerugian (Loss Function), yaitu sebuah
fungsi matematis yang mengukur seberapa besar
perbedaan antara nilai prediksi model dengan nilai target
sebenarnya.

min Sy L0 P () + (@) ()

Tujuan  optimasi  CatBoost adalah  untuk
meminimalkan rata-rata dari fungsi kerugian (L) di
seluruh sampel data pelatihan yang ada (N). Dalam rumus
ini, adalah nilai target sebenarnya untuk sampel ke-i,
sedangkan YN, F,_,(x;) + hn(x;) adalah nilai
prediksi yang diperbarui setelah pohon baru ditambahkan.
Dengan mencari h,,(x;) yang meminimalkan persamaan
ini, algoritma secara efektif memastikan bahwa setiap
pohon baru yang ditambahkan memberikan kontribusi
paling besar dalam mengurangi kesalahan prediksi secara
keseluruhan.

2.5.3. Ordered Target Statistic :

Fitur yang paling membedakan CatBoost adalah
pendekatan  inovatifnya dalam menangani fitur
kategorikal. Alih-alih menggunakan teknik standar

seperti one-hot encoding, CatBoost
mengimplementasikan ordered target statistics. Metode
ini menggantikan nilai fitur kategorikal dengan sebuah
nilai numerik yang dihitung berdasarkan statistik dari
nilai target (y). Untuk mencegah kebocoran target (farget
leakage), CatBoost menerapkan perhitungan ini pada
permutasi acak dari dataset, sehingga perhitungan untuk
satu sampel data hanya menggunakan informasi dari
sampel-sampel yang muncul sebelumnya dalam urutan
acak tersebut [18].

Dalam rumus ini, nilai pengganti x;;, untuk sebuah
fitur dihitung berdasarkan jumlah nilai target (y;) dari
data sebelumnya yang memiliki kategori yang sama. Nilai
ini kemudian distabilkan menggunakan sebuah prior atau
parameter penghalus P dan nilai rata-rata target secara
global A untuk memastikan representasi fitur yang stabil
dan bebas bias [18].
=1 e=xpl-y+P-A

23211 [Xji = xu] + P

(8)

value(xy) =

Dalam konteks penelitian ini, CatBoost diujikan
untuk mengklasifikasi lingkungan tektonik. Meskipun
seluruh fitur dalam dataset yang digunakan bersifat
numerik, sehingga keunggulan utamanya dalam
menangani fitur kategorikal tidak sepenuhnya bisa
dimanfaatkan, algoritma ini tetap disertakan dalam
perbandingan. Tujuannya adalah untuk mengevaluasi
efisiensi dan stabilitas dari mekanisme ordered boosting-
nya sebagai pembanding terhadap implementasi boosting
konvensional seperti XGBoost dan LightGBM pada data
numerik berskala besar.

2.6. Skenario Pengujian dan Evaluasi

Untuk mengukur dan memvalidasi kinerja model
secara objektif, penelitian ini menerapkan metodologi
eksperimen yang terstruktur. Proses ini dirancang untuk
mengevaluasi model secara komprehensif, mulai dari
pengujian awal hingga tahap optimasi akhir.

Langkah pertama dalam eksperimen adalah
membagi dataset menjadi data latih dan data uji
menggunakan dua skenario proporsi yang berbeda yaitu
70:30 dan 80:20. Pembagian ini dilakukan dengan teknik
stratified sampling untuk memastikan bahwa distribusi
kelas tectonic setting tetap terjaga secara proporsional di
kedua set data, yang penting untuk konsistensi evaluasi.

Pada data latih ini, diterapkan 5-fold stratified cross-
validation sebagai strategi utama untuk evaluasi. Melalui
teknik ini, model dilatih dan divalidasi sebanyak lima kali
pada bagian data yang berbeda, dan hasil akhirnya dirata-
ratakan. Pendekatan ini memberikan estimasi kinerja
yang lebih stabil dan dapat diandalkan dibandingkan
dengan pembagian data tunggal[21].

Metrik utama yang digunakan untuk mengevaluasi
kinerja keseluruhan model adalah Akurasi (Accuracy),
yang mengukur total persentase prediksi yang benar[13].
Untuk  melengkapi evaluasi dan mendapatkan
pemahaman yang lebih mendalam tentang karakteristik



performa model, metrik-metrik lain juga dianalisis, yaitu
Presisi, Recall, dan F1-Score (dengan weighted). Metrik-
metrik tambahan ini memberikan wawasan tentang
bagaimana model menangani frade-off antara false
positive dan false negative [22].

Terakhir, model yang menunjukkan performa paling
unggul pada tahap evaluasi awal dipilih untuk melalui
proses hyperparameter tuning. Proses ini dilakukan
menggunakan metode Grid Search Cross-Validation
(GridSearchCV), yang secara sistematis menguji berbagai
kombinasi parameter [23][24]. Proses pencarian ini
dioptimalkan untuk menemukan konfigurasi yang
menghasilkan skor Akurasi tertinggi selama cross
validation. Model final dengan performa terbaik
kemudian diuji untuk terakhir kalinya pada data uji data
yang sepenuhnya baru dan belum pernah digunakan untuk
mengukur kemampuan generalisasinya yang
sesungguhnya.

3. Hasil dan Pembahasan

Pada bab ini, hasil dari skenario eksperimen dan
analisis mendalam terhadap performa model-model
machine learning XGBoost, LightGBM, dan CatBoost
dalam tugas klasifikasi fectonic setting batuan vulkanik
akan dibahas. Pembahasan mencakup perbandingan
kinerja model, hasil optimasi Ayperparameter, analisis
kesalahan melalui confission matrix, serta identifikasi fitur
geokimia yang paling berpengaruh.

3.1. Perbandingan Kinerja Model Awal

Tahap evaluasi dilaksanakan untuk memberikan
komparasi perbandigan untuk performa dari ketiga model
boosting yang diuji. Komparasi ini dilakukan dengan
menerapkan dua skenario jumlah rasio data yang berbeda,
yakni dengan rasio 70:30 dan 80:20. Kinerja setiap model
dievaluasi berdasarkan empat metrik standar yaitu
Akurasi, Presisi, Recall, dan FI-Score. Untuk hasil dari
kedua skenario pengujian tersebut disajikan secara rinci
pada Tabel 3 dan Tabel 4 sebagai berikut

Tabel 3 Hasil Evaluasi Model pada Skenario 70:30

Algoritma  AKkurasi Precision Recall F1-score
LGBM 0,742 0,675 0,709 0,687
XGBoost 0,713 0,644 0,707 0,664
CatBoost 0,639 0,568 0,682 0,595

Tabel 4 Hasil Evaluasi Model pada Skenario 80:20

Algoritma  Akurasi Precision Recall F1-score
LGBM 0,739 0,670 0,714 0,686
XGBoost 0,712 0,638 0,707 0,661
CatBoost 0,643 0,573 0,683 0,599

Berdasarkan hasil pada Tabel 3 dan 4, terlihat
adanya pola yang konsisten di antara ketiga model.
LightGBM secara konsisten memberikan performa
terbaik pada kedua skenario, dengan akurasi sebesar
74,24% pada pembagian data 70:30 dan 73,97% pada
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pembagian 80:20. Keunggulan ini dapat diatribusikan
pada strategi pertumbuhan pohon leaf-wise yang
digunakan oleh LightGBM, yang memungkinkannya
untuk lebih cepat mencapai konvergensi pada area
kesalahan terbesar dalam data.

Model XGBoost menunjukkan kinerja yang sangat
kompetitif dan menempati posisi kedua, mendekati
performa LightGBM. Hal ini sejalan dengan reputasi
XGBoost sebagai algoritma yang robust dan akurat.
Sementara itu, CatBoost relatif tertinggal baik dari sisi
akurasi maupun presisi. Meskipun CatBoost memiliki
keunggulan dalam menangani fitur kategorikal, pada
dataset ini yang seluruhnya bersifat numerik, keunggulan
tersebut tidak dapat dimanfaatkan secara utuh, dan
performanya sedikit di bawah dua implementasi boosting

lainnya.
Selain akurasi, metrik Fl-score  juga
memperlihatkan  kecenderungan serupa, di mana

LightGBM menunjukkan keseimbangan paling baik
antara presisi dan recall. Ini mengindikasikan bahwa
LightGBM tidak hanya akurat secara keseluruhan, tetapi
juga lebih andal dalam mengidentifikasi setiap kelas
secara seimbang. Perbandingan hasil tersebut selanjutnya
disajikan pada Gambar 1 untuk memberikan ilustrasi yang
lebih jelas mengenai perbedaan performa antar model.

LightGaM

3
3 XGBoost
z

CatBoost

0.0 01 02 03 04 05 0.6 07
Accuracy

Gambar 4. Perbandingan Akurasi Split

3.2. Optimasi dan Evaluasi Model Terbaik

Berdasarkan hasil perbandingan model, LightGBM
menunjukkan performa paling unggul di antara ketiga
algoritma yang diuji. Oleh karena itu, pada tahap
selanjutnya dilakukan proses hypertuning terhadap
LightGBM untuk mengoptimalkan parameter-parameter
penting dan meningkatkan kinerja model secara
keseluruhan.

Hypertuning dilakukan menggunakan SearchCV
dengan 5 fold cross validation untuk memperoleh
konfigurasi parameter terbaik pada model LightGBM.
Pendekatan ini dipilih karena mampu mengevaluasi
berbagai kombinasi parameter secara sistematis serta
mengurangi potensi bias akibat pembagian data tertentu.
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Tabel 5 menyajikan nilai-nilai parameter yang digunakan
dalam proses pencarian konfigurasi optimal.

Tabel 5. Parameter GridSearchCV untuk Model LightGBM

Parameter Values
num leaves [15, 31, 63]
max depth [4,6,8]

learning rate
n estimators
subsample

[0.01, 0.03, 0.05]
[200, 400, 600]
[0.8, 1.0]

colsample bytree [0.8, 1.0]

Setelah melalui proses hypertuning, diperoleh
kombinasi parameter terbaik. Rincian nilai parameter
final yang digunakan ditunjukkan pada Tabel 6.

Tabel 6. Parameter terbaik untuk Model LightGBM

Parameter Values
num leaves 63
max depth 8
learning rate 0.05
n estimators 600
subsample 0.8
colsample bytree 0.8

Setelah diperoleh parameter optimal, dilakukan
analisis lebih lanjut untuk mengetahui kontribusi masing-
masing variabel terhadap performa model. Hal ini
ditunjukkan melalui feature importance dari LightGBM
yang disajikan pada Gambar 5.

AL203(WT%)

NA2O{WT%)

FEOT{WT%)

Feature

CAO{WT%)

CR203{WT%)

0 5000 10000 15000 20000 25000
Importance

Gambar 5. feature Importance

Analisis feature importance menunjukkan bahwa
AL203(WT%,), NA2O(WT%,), dan FEOT(WT%) menjadi
variabel paling dominan, dengan CAO(WT%) dan
CR203(WT%,) juga berperan penting dalam akurasi
model LightGBM.

Setelah hypertuning, LightGBM dievaluasi pada
pembagian data 80:20 dan 70:30. Hasilnya menunjukkan
performa yang konsisten dengan nilai akurasi, presisi,
recall, dan Fl-score yang seimbang, sebagaimana
ditunjukkan pada Tabel 7.

Tabel 7. Hasil Evaluasi Model LightGBM Setelah Hypertuning

Algoritma Akurasi Precision Recall F1-score
80:20 0.808 0.807 0.808 0.803
70:30 0.805 0.803 0.805 0.800

Model LightGBM setelah hypertuning
menunjukkan performa yang sangat stabil pada kedua
skenario. Pada split 80:20, diperoleh akurasi 80,8%,
sebuah peningkatan substansial dari akurasi awal sebesar
73,9%. Hal ini membuktikan betapa krusialnya tahap
optimasi hyperparameter. Nilai precision, recall, dan F1-
score yang seimbang dan tinggi menunjukkan bahwa
model tidak hanya akurat, tetapi juga andal dalam
mengklasifikasikan setiap kelas. Performa yang relatif
konsisten pada split 70:30 juga menandakan bahwa model
yang telah dioptimalkan ini bersifat robust dan tidak
terlalu sensitif terhadap variasi kecil pada data latih.
Perbandingan metrik evaluasi sebelum dan sesudah
tuning dapat divisualisasikan pada Gambar 6.

2
3 0.80
&

Accuracs ¥ Precision Recall Fl-score
Metri

Gambar 6. Perbandingan Metrik Evaluasi LightGBM

4. Kesimpulan dan Saran

Berdasarkan perbandingan tiga algoritma gradient
boosting, penelitian ini menyimpulkan bahwa LightGBM
merupakan model yang paling unggul untuk tugas
klasifikasi lingkungan tektonik batuan vulkanik. Proses
optimasi menggunakan Grid Search Cross-Validation
terbukti sangat efektif, di mana kinerja LightGBM
berhasil ditingkatkan secara signifikan hingga mencapai
akurasi 80,87%. Analisis feature importance juga
mengidentifikasi bahwa komposisi Al:Os (Aluminium
Oksida), Na.O (Natrium Oksida), dan FeOT (Besi Oksida
Total) merupakan variabel geokimia yang paling
berpengaruh dalam klasifikasi lingkungan teknik.

Meskipun metode ini menawarkan keunggulan
berupa klasifikasi yang cepat dan objektif, penelitian ini
juga menemukan adanya kekurangan, yaitu kesulitan
model dalam membedakan kelas-kelas minoritas yang
memiliki karakteristik geokimia tumpang tindih. Oleh
karena itu, untuk pengembangan selanjutnya, disarankan
agar penelitian mendatang menyertakan fitur tambahan
seperti unsur jejak (trace elements), mengeksplorasi
arsitektur model lain seperti Deep Learning, serta
menerapkan teknik resampling seperti SMOTE untuk
meningkatkan akurasi pada kelas-kelas yang sulit
dibedakan.
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