
Jurnal Ilmu Komputer dan Sistem Informasi 

1 

 

PERBANDINGAN ALGORITMA BOOSTING  UNTUK 

KLASIFIKASI LINGKUNGAN TEKTONIK GEOKIMIA 

VULKANIK 

Hans Santoso1)  Sabrina Phalosa Phai2) Sarah Barbara3) Maryanto4) 

 
1) 2) 3) 4)  Teknik Informatika FTI Universitas Tarumanagara 

Letjen S. Parman St No.1, Tomang, Grogol Petamburan,  

West Jakarta City, Jakarta 11440 

email : hans.535220129@stu.untar.ac.id 1), sabrina.535220131@stu.untar.ac.id 2), sarah.535220132@stu.untar.ac.id 3)  

maryanto.535220130@stu.untar.ac.id 4) 

ABSTRAK 
Penelitian ini bertujuan untuk menentukan model 

machine learning paling efektif untuk klasifikasi 

lingkungan tektonik (tectonic setting) berdasarkan 

komposisi geokimia. Menggunakan dataset dari database 

GEOROC, tiga algoritma gradient boosting XGBoost, 

LightGBM, dan CatBoost diuji melalui beberapa 

skenario, termasuk pembagian data 70:30 dan 80:20. 

Model dengan kinerja terbaik kemudian dioptimalkan 

menggunakan Grid Search Cross-Validation 

(GridSearchCV). Hasil menunjukkan bahwa model 

LightGBM, setelah melalui proses hyperparameter tuning 

pada skenario 80:20, mencapai performa tertinggi 

dengan akurasi 80,87%. Analisis kepentingan fitur 

(feature importance) lebih lanjut mengidentifikasi bahwa 

Al₂O₃ (Aluminium Oksida), Na₂O (Natrium Oksida), dan 

FeOT (Besi Oksida Total) merupakan tiga prediktor 

paling signifikan. Studi ini membuktikan bahwa 

LightGBM adalah pendekatan yang superior dan andal 

untuk tugas klasifikasi geokimia otomatis. 
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1. Pendahuluan 

Klasifikasi lingkungan tektonik (tectonic setting) 

merupakan salah satu langkah penting dalam ilmu geologi 

karena dapat digunakan untuk merekonstruksi proses 

geodinamika pembentukan batuan, mulai dari evolusi 

kerak bumi hingga pembentukan cadangan mineral [1]. 

Analisis geokimia sendiri telah terbukti menjadi alat yang 

ampuh untuk mengidentifikasi aktivitas tektonik, 

misalnya melalui karakteristik fluida panas bumi di zona 

patahan aktif [2]. Secara tradisional, para ahli geologi 

mengandalkan sebuah diagram diskriminasi berbasis 

indikator geokimia untuk melakukan klasifikasi tersebut 

[3]. Namun, di era big data dimana volume data yang 

sangat besar, metode konvensional tersebut menghadapi 

tantangan besar. Basis data geokimia global seperti 

GEOROC kini menyediakan ratusan ribu analisis sampel, 

sebuah volume data yang membuat analisis manual 

dengan diagram menjadi tidak efisien dan rentan terhadap 

ambiguitas interpretasi akibat tumpang tindih antar area 

geokimia [4]. 

Menjawab tantangan tersebut, machine learning telah 

muncul sebagai suatu pendekatan yang kuat untuk 

klasifikasi batuan secara otomatis dan objektif [5]. 

Kemampuan machine learning untuk mengenali pola 

kompleks dalam dataset multidimensi menjadikannya 

solusi ideal untuk analisis geokimia modern. Pendekatan 

berbasis data (data-driven) kini menjadi praktik umum 

untuk menyelesaikan masalah klasifikasi di ilmu geologi, 

mulai dari klasifikasi status erupsi gunung berapi, 

prediksi magnitudo gempa bumi [6], prediksi fasies 

sedimen [7], di mana hasilnya terbukti mampu melampaui 

metode-metode statistik konvensional. 

Di antara berbagai algoritma yang ada, algoritma 

seperti LightGBM, XGBoost, dan CatBoost diakui 

sebagai model yang sering menjadi subjek studi 

perbandingan untuk menentukan metode paling superior 

dalam menyelesaikan tugas-tugas prediksi [8]. 

Keunggulan model-model ini tidak hanya terbukti dalam 

domain geologi [7], tetapi juga di bidang lain yang 

menuntut akurasi tinggi seperti prediksi risiko kredit di 

industri keuangan [9]. Meskipun studi komparatif 

semacam ini telah dilakukan untuk berbagai aplikasi 

geologi, perbandingan kinerja secara langsung antara 

ketiganya untuk klasifikasi lingkungan tektonik batuan 

vulkanik secara spesifik menggunakan dataset berskala 

besar masih menjadi area yang perlu dieksplorasi lebih 

dalam. 

Oleh karena itu, penelitian ini bertujuan untuk 

melakukan perbandingan kinerja secara sistematis antara 

algoritma boosting yaitu LightGBM, XGBoost, dan 

CatBoost menggunakan data dari yang bersumber dari 

database GEOROC. Kinerja model akan dievaluasi 

berdasarkan metrik akurasi untuk mengidentifikasi 

algoritma mana yang menjadi terbaik. Hasil dari 

penelitian ini diharapkan dapat memberikan rekomendasi 

metode komputasi terbaik untuk analisis geokimia 

otomatis, yang dapat membantu para ahli geologi dalam 

proses interpretasi data yang lebih cepat dan objektif serta 

menjadi referensi penelitian di kemudian hari. 
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2. Metode Penelitian 

2.1. Sumber Data       

Penelitian ini menggunakan dataset geokimia 

batuan vulkanik yang diperoleh dari The GEOROC 

Database (Geochemistry of Rocks of the Oceans and 

Continents), yaitu basis data terbuka yang berisi hasil 

analisis kimia batuan beku (igneous) dan metamorf dari 

berbagai wilayah di dunia. GEOROC merupakan salah 

satu sumber data geokimia terpercaya dan lengkap, 

mencakup lebih dari 23.000 publikasi ilmiah, 697.000 

sampel, dan 40 juta nilai data individual, yang tersedia 

secara bebas dibawah lisensi Creative Commons (CC BY-

SA 4.0) [5]. 

Dataset spesifik yang digunakan bersumber dari 

kumpulan data oleh Qin et al. (2022) yang berjudul 

“Global mantle clinopyroxene data (major and trace 

elements)”, diterbitkan melalui GFZ Data Services [10]. 

Dataset tersebut diunduh dalam format Excel (.xlsx) 

dengan total 21.600 baris data mentah sebelum dilakukan 

pembersihan. Setiap entri mewakili satu sampel batuan 

vulkanik dengan informasi kandungan unsur utama 

seperti SiO₂, TiO₂, Al₂O₃, FeOt, MgO, CaO, Na₂O, Cr₂O₃, 

dan MnO (dalam persen berat/wt%), serta label 

lingkungan tektonik (tectonic setting) seperti Intraplate 

Volcanics, Ocean Island, Convergent Margin, 

Continental Flood Basalt, Rift Volcanics, Archean 

Craton, Oceanic Plateau, Seamound , Complex Volcanic 

Settings, dan Submarine Ridge. Untuk jumlah distribusi  

Kelas Tectonic Setting dapat dilihat pada Tabel 1 sebagai 

berikut. 

 
Tabel 1  Distribusi Kelas Tektonic  Sebelum Penggabungan 

Tectonic Setting Jumlah 

Intraplate Volcanics 11.371 

Ocean Island 3.414 

Convergent Margin 2.830 

Continental Flood Basalt 1.640 

Rift Volcanics 1.493 

Archean Craton 253 

Oceanic Plateu 193 

Seamount 182 

Complex Volcanic Settings 73 

Submarine Ridge 6 

2.2. Pra-pemrosesan Data 

Tahap pra-pemrosesan data bertujuan untuk 

mentransformasi data mentah menjadi format yang 

bersih, terstruktur, dan siap untuk pemodelan machine 

learning. Proses ini meliputi pembersihan data, 

penanganan nilai hilang, penyederhanaan kelas, serta 

normalisasi fitur. 

Langkah pertama adalah pembersihan data (data 

cleaning). Dari total 21.600 entri data mentah, semua 

baris yang tidak memiliki label tectonic setting dihapus. 

Selanjutnya, dilakukan seleksi fitur dengan hanya 

mempertahankan sembilan atribut kimia utama yaitu 

SiO₂, TiO₂, Al₂O₃, FeOT, MgO, CaO, Na₂O, Cr₂O₃, dan 

MnO. Data kosong (missing values) yang terdapat pada 

fitur-fitur tersebut diisi (diimputasi) menggunakan nilai 

median dari masing-masing kolom. Metode median 

dipilih karena lebih robust terhadap nilai ekstrim 

(outliers). Selain itu, satu entri data dengan nilai 

TIO2(WT%) yang sangat tinggi (dianggap outlier) juga 

dihapus untuk menjaga integritas statistik dataset. Outlier 

dapat terlihat pada Gambar 1.  

 

 
Gambar 1. Outlier pada Dataset 

 

Langkah berikutnya adalah penyederhanaan kelas 

target untuk mengatasi ketidakseimbangan distribusi. 

Beberapa kelas dengan jumlah sampel yang sangat sedikit 

(kurang dari 1,5% dari total data), yaitu Archean Craton, 

Oceanic Plateau, Seamount, Complex Volcanic Settings, 

dan Submarine Ridge, digabungkan menjadi satu kelas 

baru berlabel “Others”. Langkah ini bertujuan agar model 

bisa lebih stabil saat pelatihan dan mencegah bias 

terhadap kelas-kelas yang dominan. Persebaran distribusi 

data per kelas tektonik secara setelah digabungkan dapat 

dilihat jumlah angka spesifiknya pada Tabel 2 sebagai 

berikut. 
 

Tabel 2  Distribusi Kelas Tektonik Setelah Penggabungan 

Tectonic Setting Jumlah 

Intraplate Volcanics 11.371 

Ocean Island 3.414 

Convergent Margin 2.830 

Continental Flood Basalt 1.640 

Rift Volcanics 1.493 

Others 707 

 

Kemudian untuk perbandingan distribusi kelas 

Tectonic Setting ketika sebelum dan sesudah 

penggabungan kelas minoritas menjadi kelas Others 

dapat dilihat pada Gambar 2 dan Gambar 3. 

 

 
Gambar 2. Distribusi Jumlah Data per Kelas Tektonik 
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Gambar 3. Distribusi Data setelah Penggabungan 

 

Diagram ini menunjukkan perbandingan jumlah 

sampel untuk setiap kategori lingkungan tektonik 

sebelum (Gambar 1) dan sesudah (Gambar 2) 

penggabungan kategori minor ke dalam kelas Others. 

Setelah data bersih, dilakukan normalisasi fitur 

menggunakan StandardScaler dari scikit-learn agar setiap 

fitur memiliki skala yang seragam (rata-rata 0 dan standar 

deviasi 1). Terakhir, dataset dibagi menjadi data latih 

(training set) dan data uji (testing set) dengan dua skema 

proporsi, yaitu 70:30 dan 80:20. Pembagian ini dilakukan 

secara stratified, yang memastikan proporsi setiap kelas 

tektonik tetap terjaga baik di data latih maupun data uji, 

sehingga evaluasi model menjadi lebih objektif dan dapat 

diandalkan. 

2.3. Extreme Gradient Boost (XGBoost) 

XGBoost merupakan algoritma gradient boosting 

yang dirancang untuk efisiensi dan akurasi tinggi. 

Algoritma ini bekerja dengan membangun serangkaian 

model pohon keputusan (decision tree) secara sekuensial. 

Setiap pohon baru dibuat untuk memperbaiki kesalahan 

prediksi (residual errors) dari kombinasi pohon 

sebelumnya [11]. Proses ini berfokus pada contoh yang 

salah diklasifikasikan, menghasilkan model prediksi akhir 

yang kuat dan akurat  [12]. 

Salah satu keunggulan utama yang membedakan 

XGBoost dari implementasi gradient boosting lainnya 

adalah mekanisme regularisasi yang terintegrasi secara 

canggih untuk mencegah overfitting. Teknik regularisasi 

ini secara efektif mengontrol kompleksitas model dengan 

memberikan penalty pada pohon yang tumbuh terlalu 

rumit, misalnya dengan membatasi jumlah daun atau 

kedalaman pohon [13]. Selain itu, XGBoost secara 

internal mengoptimalkan performa komputasi dengan 

menyederhanakan fungsi objektifnya. Hal ini 

memungkinkan penggabungan antara aspek prediktif 

(seberapa baik model cocok dengan data) dan aspek 

regularisasi (seberapa kompleks modelnya) dalam satu 

perhitungan yang efisien, sehingga tetap 

mempertahankan kecepatan komputasi yang optimal 

bahkan pada dataset berskala besar[13].  

Struktur pohon keputusan pada XGBoost sendiri 

terdiri dari node bagian dalam yang merepresentasikan 

pengujian pada sebuah atribut (fitur), dan leaf node (daun) 

yang merepresentasikan skor akhir dari sebuah keputusan 

atau prediksi [14].  Secara lebih mendalam, proses 

pembelajaran aditif pada XGBoost tidak hanya berfokus 

pada residu sederhana, tetapi juga memanfaatkan turunan 

pertama (Gradien) dan kedua (Hessian) dari fungsi 

kerugian. Penggunaan informasi gradien orde kedua ini 

memungkinkan algoritma untuk melakukan optimasi 

yang lebih presisi dan cepat menuju titik minimal dari 

fungsi objektif. Hal ini memberikan keuntungan 

signifikan dibandingkan implementasi gradient boosting 

tradisional yang hanya menggunakan gradien orde 

pertama. Dengan demikian, XGBoost dapat secara efektif 

menemukan arah dan besaran perbaikan yang paling 

optimal pada setiap langkah, menghasilkan konvergensi 

yang lebih cepat dan model yang sering kali lebih akurat. 

 

2.3.1. Fungsi Prediksi:       

 

 Hasil prediksi (ŷ𝑖) untuk sebuah data (𝑥𝑖) adalah 

jumlah skor dari 𝐾 pohon keputusan yang telah dibangun, 

seperti ditunjukkan pada persamaan berikut : 

 

ŷ𝑖 = ∑

𝑘

𝑘=1

𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹                   (1)   

 

Dimana 𝑓𝑘 adalah satu pohon keputusan independen. 

Untuk membangun model ini, XGBoost bekerja dengan 

cara meminimalkan sebuah fungsi objektif. Fungsi ini 

secara cerdas menyeimbangkan antara seberapa baik 

model cocok dengan data latih dan seberapa kompleks 

model tersebut. 

 

2.3.2. Fungsi Objektif: 

 

 Tujuan fungsi ini adalah untuk mengukur apakah 

model tersebut cocok sebagai set data latih dan 

menentukan kompleksitas model. Fungsi objektif (Obj) 

yang diminimalkan oleh XGBoost terdiri dari dua 

komponen utama: fungsi kerugian (loss function) dan 

fungsi regularisasi (regularization function). 

 

𝑂𝑏𝑗(𝜃) = 𝐿(𝜃) + 𝛺(𝜃)                   (2)   
 

 Dimana 𝑂𝑏𝑗(𝜃) sebagai fungsi objektif, 𝐿(𝜃) 

sebagai pengukur selisih aktual dengan hasil prediksi, 

𝛺(𝜃) untuk mengontrol kompleksitas model. 

 

2.3.3. Fungsi Regularisasi: 

 

 Komponen regularisasi inilah yang menjadi kunci 

kekuatan XGBoost dalam mengontrol overfitting. 

Fungsinya didefinisikan sebagai berikut: 

 

𝛺(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆 ∑

𝑇

𝑗=1

𝑤𝑗 
2                (3)  

 

 Fungsi regularisasi ini mengukur kompleksitas 

model, di mana 𝑇 adalah jumlah total daun (leaves) pada 

sebuah pohon dan 𝑤𝑗  adalah skor (bobot) yang diberikan 
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pada setiap daun. Besarnya penalty dikontrol oleh 

parameter regularisasi 𝛾 dan  𝜆 . Penalty diberikan jika 

pohon menjadi terlalu kompleks dengan memiliki terlalu 

banyak daun, atau jika skor pada daun memiliki bobot 

yang terlalu ekstrim. 

2.4. Light Gradient Boosting Machine (LightGBM)       

LightGBM (Light Gradient Boosting Machine) 

adalah implementasi kerangka kerja gradient boosting 

yang dikembangkan oleh Microsoft, dirancang secara 

khusus untuk meningkatkan efisiensi dan kecepatan 

pelatihan pada dataset berukuran besar [15]. Seperti 

algoritma boosting lainnya, LightGBM bekerja dengan 

membangun model pohon keputusan (decision tree) 

secara bertahap, di mana setiap model baru (weak learner) 

ditambahkan untuk memperbaiki kesalahan prediksi dari 

kombinasi model sebelumnya [16]. Proses pembaruan 

model pada LightGBM mengikuti prinsip dasar gradient 

boosting dapat dilihat pada penjelasan berikut. 

 

2.4.1. Fungsi Prediksi: 

 Fungsi prediksi pada setiap iterasi diperbarui 

dengan menambahkan pohon keputusan baru. Dalam 

persamaan ini, 𝐹𝑚(𝑥) adalah fungsi prediksi pada iterasi 

ke-m, 𝐹𝑚−1(𝑥)  adalah fungsi dari iterasi sebelumnya, 

ℎ𝑚(𝑥)adalah pohon keputusan baru, 𝜂 dan adalah 

learning rate yang mengontrol besarnya kontribusi dari 

pohon baru tersebut. 

 

𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) +  𝜂 ·  ℎ𝑚(𝑥)           (4)   
 

2.4.2. Fungsi Objektif: 

 Seperti XGBoost, tujuan optimasi LightGBM 

adalah meminimalkan fungsi objektif yang terdiri dari dua 

komponen utama: fungsi kerugian (loss function) yang 

mengukur kesalahan prediksi, dan fungsi regularisasi 

yang mengontrol kompleksitas model untuk mencegah 

overfitting [17]. 

 

𝑂𝑏𝑗 =  ∑

𝑛

𝑖=1 

𝐿(𝑦𝑖, 𝑦𝑖̂) + ∑

𝑇

𝑡=1

𝛺(𝑓𝑡)         (5)   

 

 Dalam persamaan ini,  𝐿(𝑦𝑖, 𝑦𝑖̂) adalah fungsi 

kerugian antara label aktual 𝑦𝑖,dan prediksi model 𝑦𝑖̂ 
sedangkan 𝛺(𝑓𝑡) adalah fungsi regularisasi yang 

memberikan penalty pada kompleksitas pohon. 

 

2.4.3. Inovasi Utama LightGBM: 

 Kecepatan dan efisiensi LightGBM yang superior 

berasal dari beberapa teknik inovatif yang 

membedakannya dari implementasi boosting lainnya. 

Dua yang paling signifikan yaitu yang pertama Gradient-

based One-Side Sampling (GOSS) dimana berbeda dari 

metode yang menggunakan seluruh data iterasi, GOSS 

memilih sebagian data untuk membangun pohon 

keputusan. Teknik ini mempertahankan semua data yang 

sulit diprediksi (dengan nilai gradien tinggi) dan hanya 

mengambil sebagian kecil data acak dari sampel yang 

mudah diprediksi(dengan nilai gradien rendah). 

Pendekatan ini secara signifikan menurunkan beban 

komputasi tanpa kehilangan informasi penting dari 

distribusi data.  

 Kemudian yang kedua adalah Exclusive Feature 

Bundling (EFB) untuk mengatasi dataset dengan banyak 

fitur, EFB menjadi pendekatan yang efisien. Teknik ini 

mengurangi jumlah fitur dengan cara menggabungkan 

fitur-fitur yang bersifat mutually exclusive (jarang 

memiliki nilai bukan nol secara bersamaan) menjadi satu 

bundle fitur tunggal. Proses ini secara efektif mengurangi 

kompleksitas tanpa kehilangan banyak informasi, 

sehingga mempercepat proses pelatihan secara signifikan. 

 

2.4.4. Struktur Pohon leaf Wise: 

  Berbeda dengan XGBoost yang membangun 

pohon secara level-wise (semua cabang pada satu level 

dikembangkan bersamaan), LightGBM menggunakan 

strategi leaf-wise. Strategi ini mampu menghasilkan 

model dengan akurasi lebih tinggi yang akan memberikan 

pengurangan loss terbesar. Meskipun pendekatan ini 

dapat menghasilkan pohon yang lebih akurat, ia berisiko 

menyebabkan overfitting pada dataset kecil, sehingga 

memerlukan pengaturan parameter seperti max_depth 

dengan cermat. 

 Berkat inovasi-inovasi tersebut, LightGBM 

menawarkan keunggulan berupa waktu pelatihan yang 

jauh lebih cepat dan konsumsi memori yang lebih rendah 

dibandingkan boosting lainnya, menjadikannya sangat 

cocok untuk analisis dataset geokimia berskala besar[16]. 

2.5. Categorical Boosting (CatBoost) 

CatBoost (Categorical Boosting) adalah algoritma 

gradient boosting modern yang dikembangkan oleh 

Yandex. Algoritma ini dirancang secara spesifik untuk 

memberikan performa unggul dengan mengatasi dua 

tantangan utama dalam machine learning yaitu 

penanganan fitur kategorikal yang efisien dan pencegahan 

overfitting [18]. Seperti implementasi gradient boosting 

lainnya, CatBoost menggunakan pohon keputusan biner 

(binary decision tree) sebagai model dasar (base learner) 

yang dibangun secara sekuensial untuk memperbaiki 

kesalahan dari model sebelumnya [19].  

Inovasi utama yang membedakan CatBoost adalah 

implementasi ordered boosting, sebuah variasi dari skema 

gradient boosting klasik yang secara signifikan lebih 

robust terhadap overfitting, terutama pada dataset 

berukuran kecil [18]. Selain itu, CatBoost memiliki 

metode internal untuk menentukan tingkat kepentingan 

fitur, di mana Prediction Values Change (PVC) menjadi 

metode default untuk mengukur kontribusi setiap fitur 

[20]. 

Secara fundamental, CatBoost tetap mengikuti 

prinsip dasar gradient boosting, di mana model dibangun 

secara bertahap dengan memperbarui fungsi prediksi pada 
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setiap iterasi untuk terus-menerus meminimalkan 

kesalahan. 

 

2.5.1. Fungsi Prediksi: 

 CatBoost membangun model prediktifnya melalui 

proses yang bersifat aditif dan iteratif. Model tidak 

dibangun sekaligus, melainkan disempurnakan secara 

bertahap. Pada setiap iterasi, sebuah model dasar baru 

dalam hal ini, pohon keputusan ( ℎ𝑚(𝑥)) dilatih secara 

spesifik untuk memperbaiki kesalahan atau residu yang 

ditinggalkan oleh kombinasi model dari semua iterasi 

sebelumnya. Pohon baru ini kemudian ditambahkan ke 

dalam ensemble dengan bobot tertentu yang diatur oleh 

learning rate (∝). 

 Persamaan pembaruan model ini secara matematis 

merangkum proses tersebut. Dalam persamaan ini, 

𝐹𝑚(𝑥) adalah fungsi prediksi akhir setelah iterasi ke-m, 

yang merupakan hasil dari fungsi prediksi sebelumnya, 

𝐹𝑚−1(𝑥), ditambah dengan kontribusi dari pohon 

keputusan baru,  ℎ𝑚(𝑥). Parameter atau learning rate 

memainkan peran krusial dalam mengontrol seberapa 

besar dampak dari setiap pohon baru, di mana nilai yang 

lebih kecil membuat proses pembelajaran lebih lambat 

namun lebih robust terhadap overfitting. 

 

𝐹𝑚(𝑥) =  𝐹𝑚−1(𝑥) +  𝜂 · ∝ ℎ𝑚(𝑥)           (6)  
 

2.5.2. Loss Function: 

 Tujuan utama dari setiap iterasi dalam algoritma 

CatBoost adalah untuk menemukan pohon Keputusan 

ℎ𝑚(𝑥𝑖) yang paling optimal. Optimal dalam pembahasan 

ini berarti pohon yang, ketika ditambahkan ke model, 

mampu menghasilkan penurunan kesalahan prediksi yang 

paling signifikan. Proses pencarian ini dipandu oleh 

sebuah fungsi kerugian (Loss Function), yaitu sebuah 

fungsi matematis yang mengukur seberapa besar 

perbedaan antara nilai prediksi model dengan nilai target 

sebenarnya. 

𝑚𝑖𝑛
1

𝑁
∑𝑁

𝑖=1 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖))         (7)  

 

Tujuan optimasi CatBoost adalah untuk 

meminimalkan rata-rata dari fungsi kerugian (𝐿) di 

seluruh sampel data pelatihan yang ada (𝑁). Dalam rumus 

ini, adalah nilai target sebenarnya untuk sampel ke-i, 

sedangkan ∑𝑁
𝑖=1 𝐹𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖) adalah nilai 

prediksi yang diperbarui setelah pohon baru ditambahkan. 

Dengan mencari ℎ𝑚(𝑥𝑖) yang meminimalkan persamaan 

ini, algoritma secara efektif memastikan bahwa setiap 

pohon baru yang ditambahkan memberikan kontribusi 

paling besar dalam mengurangi kesalahan prediksi secara 

keseluruhan. 

2.5.3. Ordered Target Statistic : 

 Fitur yang paling membedakan CatBoost adalah 

pendekatan inovatifnya dalam menangani fitur 

kategorikal. Alih-alih menggunakan teknik standar 

seperti one-hot encoding, CatBoost 

mengimplementasikan ordered target statistics. Metode 

ini menggantikan nilai fitur kategorikal dengan sebuah 

nilai numerik yang dihitung berdasarkan statistik dari 

nilai target (y). Untuk mencegah kebocoran target (target 

leakage), CatBoost menerapkan perhitungan ini pada 

permutasi acak dari dataset, sehingga perhitungan untuk 

satu sampel data hanya menggunakan informasi dari 

sampel-sampel yang muncul sebelumnya dalam urutan 

acak tersebut [18]. 

Dalam rumus ini, nilai pengganti 𝑥𝑖𝑘  untuk sebuah 

fitur dihitung berdasarkan jumlah nilai target (𝑦𝑗) dari 

data sebelumnya yang memiliki kategori yang sama. Nilai 

ini kemudian distabilkan menggunakan sebuah prior atau 

parameter penghalus P dan nilai rata-rata target secara 

global A untuk memastikan representasi fitur yang stabil 

dan bebas bias [18].  

 

𝑣𝑎𝑙𝑢𝑒(𝑥𝑖𝑘)  =  
∑𝑖=1

𝑗=1  [𝑥𝑗𝑘 = 𝑥𝑖𝑘] ∙ 𝑦𝑗 + 𝑃 ∙ 𝐴

∑𝑖=1
𝑗=1  [𝑥𝑗𝑘 = 𝑥𝑖𝑘] + 𝑃

        (8)  

 

Dalam konteks penelitian ini, CatBoost diujikan 

untuk mengklasifikasi lingkungan tektonik. Meskipun 

seluruh fitur dalam dataset yang digunakan bersifat 

numerik, sehingga keunggulan utamanya dalam 

menangani fitur kategorikal tidak sepenuhnya bisa 

dimanfaatkan, algoritma ini tetap disertakan dalam 

perbandingan. Tujuannya adalah untuk mengevaluasi 

efisiensi dan stabilitas dari mekanisme ordered boosting-

nya sebagai pembanding terhadap implementasi boosting 

konvensional seperti XGBoost dan LightGBM pada data 

numerik berskala besar. 

2.6. Skenario Pengujian dan Evaluasi 

Untuk mengukur dan memvalidasi kinerja model 

secara objektif, penelitian ini menerapkan metodologi 

eksperimen yang terstruktur. Proses ini dirancang untuk 

mengevaluasi model secara komprehensif, mulai dari 

pengujian awal hingga tahap optimasi akhir. 

Langkah pertama dalam eksperimen adalah 

membagi dataset menjadi data latih dan data uji 

menggunakan dua skenario proporsi yang berbeda yaitu 

70:30 dan 80:20. Pembagian ini dilakukan dengan teknik 

stratified sampling untuk memastikan bahwa distribusi 

kelas tectonic setting tetap terjaga secara proporsional di 

kedua set data, yang penting untuk konsistensi evaluasi. 

Pada data latih ini, diterapkan 5-fold stratified cross-

validation sebagai strategi utama untuk evaluasi. Melalui 

teknik ini, model dilatih dan divalidasi sebanyak lima kali 

pada bagian data yang berbeda, dan hasil akhirnya dirata-

ratakan. Pendekatan ini memberikan estimasi kinerja 

yang lebih stabil dan dapat diandalkan dibandingkan 

dengan pembagian data tunggal[21]. 

Metrik utama yang digunakan untuk mengevaluasi 

kinerja keseluruhan model adalah Akurasi (Accuracy), 

yang mengukur total persentase prediksi yang benar[13]. 

Untuk melengkapi evaluasi dan mendapatkan 

pemahaman yang lebih mendalam tentang karakteristik 
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performa model, metrik-metrik lain juga dianalisis, yaitu 

Presisi, Recall, dan F1-Score (dengan weighted). Metrik-

metrik tambahan ini memberikan wawasan tentang 

bagaimana model menangani trade-off antara false 

positive dan false negative [22]. 

Terakhir, model yang menunjukkan performa paling 

unggul pada tahap evaluasi awal dipilih untuk melalui 

proses hyperparameter tuning. Proses ini dilakukan 

menggunakan metode Grid Search Cross-Validation 

(GridSearchCV), yang secara sistematis menguji berbagai 

kombinasi parameter [23][24]. Proses pencarian ini 

dioptimalkan untuk menemukan konfigurasi yang 

menghasilkan skor Akurasi tertinggi selama cross 

validation. Model final dengan performa terbaik 

kemudian diuji untuk terakhir kalinya pada data uji data 

yang sepenuhnya baru dan belum pernah digunakan untuk 

mengukur kemampuan generalisasinya yang 

sesungguhnya. 

3. Hasil dan Pembahasan 

Pada bab ini, hasil dari skenario eksperimen dan 

analisis mendalam terhadap performa model-model 

machine learning XGBoost, LightGBM, dan CatBoost 

dalam tugas klasifikasi tectonic setting batuan vulkanik 

akan dibahas. Pembahasan mencakup perbandingan 

kinerja model, hasil optimasi hyperparameter, analisis 

kesalahan melalui confusion matrix, serta identifikasi fitur 

geokimia yang paling berpengaruh. 

3.1. Perbandingan Kinerja Model Awal 

Tahap evaluasi dilaksanakan untuk memberikan 

komparasi perbandigan untuk performa dari ketiga model 

boosting yang diuji. Komparasi ini dilakukan dengan 

menerapkan dua skenario jumlah rasio data yang berbeda, 

yakni dengan rasio 70:30 dan 80:20. Kinerja setiap model 

dievaluasi berdasarkan empat metrik standar yaitu 

Akurasi, Presisi, Recall, dan F1-Score. Untuk hasil dari 

kedua skenario pengujian tersebut disajikan secara rinci 

pada Tabel 3 dan Tabel 4 sebagai berikut 

 
Tabel 3  Hasil Evaluasi Model pada Skenario 70:30 

Algoritma Akurasi Precision Recall F1-score 

LGBM 0,742 0,675 0,709 0,687 
XGBoost 0,713 0,644 0,707 0,664 

CatBoost 0,639 0,568 0,682 0,595 

 
Tabel 4  Hasil Evaluasi Model pada Skenario 80:20 

Algoritma Akurasi Precision Recall F1-score 

LGBM 0,739 0,670 0,714 0,686 

XGBoost 0,712 0,638 0,707 0,661 
CatBoost 0,643 0,573 0,683 0,599 

 

Berdasarkan hasil pada Tabel 3 dan 4, terlihat 

adanya pola yang konsisten di antara ketiga model. 

LightGBM secara konsisten memberikan performa 

terbaik pada kedua skenario, dengan akurasi sebesar 

74,24% pada pembagian data 70:30 dan 73,97% pada 

pembagian 80:20. Keunggulan ini dapat diatribusikan 

pada strategi pertumbuhan pohon leaf-wise yang 

digunakan oleh LightGBM, yang memungkinkannya 

untuk lebih cepat mencapai konvergensi pada area 

kesalahan terbesar dalam data. 

Model XGBoost menunjukkan kinerja yang sangat 

kompetitif dan menempati posisi kedua, mendekati 

performa LightGBM. Hal ini sejalan dengan reputasi 

XGBoost sebagai algoritma yang robust dan akurat. 

Sementara itu, CatBoost relatif tertinggal baik dari sisi 

akurasi maupun presisi. Meskipun CatBoost memiliki 

keunggulan dalam menangani fitur kategorikal, pada 

dataset ini yang seluruhnya bersifat numerik, keunggulan 

tersebut tidak dapat dimanfaatkan secara utuh, dan 

performanya sedikit di bawah dua implementasi boosting 

lainnya. 

Selain akurasi, metrik F1-score juga 

memperlihatkan kecenderungan serupa, di mana 

LightGBM menunjukkan keseimbangan paling baik 

antara presisi dan recall. Ini mengindikasikan bahwa 

LightGBM tidak hanya akurat secara keseluruhan, tetapi 

juga lebih andal dalam mengidentifikasi setiap kelas 

secara seimbang. Perbandingan hasil tersebut selanjutnya 

disajikan pada Gambar 1 untuk memberikan ilustrasi yang 

lebih jelas mengenai perbedaan performa antar model. 

 

 
Gambar 4. Perbandingan Akurasi Split  

. 

3.2. Optimasi dan Evaluasi Model Terbaik 

Berdasarkan hasil perbandingan model, LightGBM 

menunjukkan performa paling unggul di antara ketiga 

algoritma yang diuji. Oleh karena itu, pada tahap 

selanjutnya dilakukan proses hypertuning terhadap 

LightGBM untuk mengoptimalkan parameter-parameter 

penting dan meningkatkan kinerja model secara 

keseluruhan. 

Hypertuning dilakukan menggunakan SearchCV 

dengan 5 fold cross validation untuk memperoleh 

konfigurasi parameter terbaik pada model LightGBM. 

Pendekatan ini dipilih karena mampu mengevaluasi 

berbagai kombinasi parameter secara sistematis serta 

mengurangi potensi bias akibat pembagian data tertentu. 
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Tabel 5 menyajikan nilai-nilai parameter yang digunakan 

dalam proses pencarian konfigurasi optimal. 

 
Tabel 5. Parameter GridSearchCV untuk Model LightGBM 

Parameter Values 

num leaves [15, 31, 63] 

max depth [4, 6, 8] 
learning rate [0.01, 0.03, 0.05] 

n estimators [200, 400, 600] 

subsample [0.8, 1.0] 
colsample bytree [0.8, 1.0] 

 

Setelah melalui proses hypertuning, diperoleh 

kombinasi parameter terbaik. Rincian nilai parameter 

final yang digunakan ditunjukkan pada Tabel 6. 

 
Tabel 6. Parameter terbaik  untuk Model LightGBM 

Parameter Values 

num leaves 63 
max depth 8 

learning rate 0.05 

n estimators 600 
subsample 0.8 

colsample bytree 0.8 

 

Setelah diperoleh parameter optimal, dilakukan 

analisis lebih lanjut untuk mengetahui kontribusi masing-

masing variabel terhadap performa model. Hal ini 

ditunjukkan melalui feature importance dari LightGBM 

yang disajikan pada Gambar 5. 

 

 
Gambar 5. feature Importance   

 

Analisis feature importance menunjukkan bahwa 

AL2O3(WT%), NA2O(WT%), dan FEOT(WT%) menjadi 

variabel paling dominan, dengan CAO(WT%) dan 

CR2O3(WT%) juga berperan penting dalam akurasi 

model LightGBM. 

Setelah hypertuning, LightGBM dievaluasi pada 

pembagian data 80:20 dan 70:30. Hasilnya menunjukkan 

performa yang konsisten dengan nilai akurasi, presisi, 

recall, dan F1-score yang seimbang, sebagaimana 

ditunjukkan pada Tabel 7. 

 
Tabel 7. Hasil Evaluasi Model LightGBM Setelah Hypertuning 

Algoritma Akurasi Precision Recall F1-score 

80:20 0.808 0.807 0.808 0.803 

70:30 0.805 0.803 0.805 0.800 

 

Model LightGBM setelah hypertuning 

menunjukkan performa yang sangat stabil pada kedua 

skenario. Pada split 80:20, diperoleh akurasi 80,8%, 

sebuah peningkatan substansial dari akurasi awal sebesar 

73,9%. Hal ini membuktikan betapa krusialnya tahap 

optimasi hyperparameter. Nilai precision, recall, dan F1-

score yang seimbang dan tinggi menunjukkan bahwa 

model tidak hanya akurat, tetapi juga andal dalam 

mengklasifikasikan setiap kelas. Performa yang relatif 

konsisten pada split 70:30 juga menandakan bahwa model 

yang telah dioptimalkan ini bersifat robust dan tidak 

terlalu sensitif terhadap variasi kecil pada data latih. 

Perbandingan metrik evaluasi sebelum dan sesudah 

tuning dapat divisualisasikan pada Gambar 6. 

 

 
Gambar 6. Perbandingan Metrik Evaluasi LightGBM   

4. Kesimpulan dan Saran 

Berdasarkan perbandingan tiga algoritma gradient 

boosting, penelitian ini menyimpulkan bahwa LightGBM 

merupakan model yang paling unggul untuk tugas 

klasifikasi lingkungan tektonik batuan vulkanik. Proses 

optimasi menggunakan Grid Search Cross-Validation 

terbukti sangat efektif, di mana kinerja LightGBM 

berhasil ditingkatkan secara signifikan hingga mencapai 

akurasi 80,87%. Analisis feature importance juga 

mengidentifikasi bahwa komposisi Al₂O₃ (Aluminium 

Oksida), Na₂O (Natrium Oksida), dan FeOT (Besi Oksida 

Total) merupakan variabel geokimia yang paling 

berpengaruh dalam klasifikasi lingkungan teknik.  

Meskipun metode ini menawarkan keunggulan 

berupa klasifikasi yang cepat dan objektif, penelitian ini 

juga menemukan adanya kekurangan, yaitu kesulitan 

model dalam membedakan kelas-kelas minoritas yang 

memiliki karakteristik geokimia tumpang tindih. Oleh 

karena itu, untuk pengembangan selanjutnya, disarankan 

agar penelitian mendatang menyertakan fitur tambahan 

seperti unsur jejak (trace elements), mengeksplorasi 

arsitektur model lain seperti Deep Learning, serta 

menerapkan teknik resampling seperti SMOTE untuk 

meningkatkan akurasi pada kelas-kelas yang sulit 

dibedakan. 
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