SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN DESTINASI WISATA DI KOTA PANGKAL PINANG MENGGUNAKAN METODE MULTI ATTRIBUTE UTILITY THEORY

Andre Blenski 1) Hugeng Hugeng 2) Tri Sutrisno 3)

¹⁾ Program Studi Sistem Informasi, Fakultas Teknologi Informasi, Universitas Tarumanagara
²⁾ Program Studi Teknik Elektro, Fakultas Teknik, Universitas Tarumanagara
Jl. Letjen S. Parman No.1, Jakarta 11440, Indonesia

email: 1) andre.825180077@stu.untar.ac.id, 2) hugeng@ft.untar.ac.id, 3) tris@fti.untar.ac.id

ABSTRACT

Pangkal Pinang City is one of the City Government Areas in Indonesia is a member of the Bangka Belitung Islands Province Is also the capital of the province. Pangkalpinang City is divided into 7 districts namely Taman Sari, Rangkui, Pangkal balam, Gabek, Bukit Intan, Girimaya and Gerunggang. There are many local tourist destinations in The city of Pangkal Pinang, some of which are Pukan Beach, Bangka Botanical Garden, Pangkal Pinang Bangka Golden Bridge, Merdeka Park Square, and etc.

The purpose of this research is to advance tourism in areca nut. In this study using the Multi Attribute Utility method theory. This method was chosen because it helps to determine the number of destination tours, distance and travel time to tourist destinations, tourist ticket prices, facilities and infrastructure, cleanliness and security of tourist destinations in the base city betel nut. Results From this study, the results obtained are knowing the distance and the time taken, the number and types of tours in Pangkal Pinang, level of cleanliness and security as well as ticket prices for each tourist destination in the city of Pangkal Pinang.

Keywords

Pangkal Pinang, Decision Support Systems, Destination, Multi Attribute Utility Theory Methods

1. Pendahuluan

Perubahan Dialog Sanggup membantu terlaksananya mengambil suatu keputusan serta memberikan informasi alternatif terbaik dalam memutuskan suatu keputusan. Pengujung yang bertamasya ke tempat yang memiliki sejarah atau memiliki pemandangan yang indah, itu sangat berperan penting dimana Indonesia menempati ketiga urutan komoditi minyak dan gas bumi [1]. Menurut data di tahun 2016 silam, terdapat jumlah pengujung mancanegara mencapai 11.525.963 juta lebih besar ditahun sebelumnya [2].

Tujuan wisata di Indonesia mengalami kenaikan khususnya tamasya yang terletak di Kota Pangkal Pinang. Pangkal Pinang merupakan Kota yang berada di Provinsi Kepulauan Bangka Belitung. Menurut garis astronomis Kota Pangkal Pinang antara 20.4' sampai 20.10' Lintang setang dan antara 106.04' sampai 106.07' Bujur Timur. Terdapat banyak destinasi wisata lokal yang ada di Kota Pangkal Pinang beberapa diataranya yaitu Pantai Pukan, Bangka Botanical Garden, Jembatan Emas Pangkal Pinang Bangka, Alun-alun Taman Merdeka, dan lain sebagainya [3].

Dari banyaknya pilihan destinasi yang ada di Kota Pangkal Pinang, sewaktu-waktu tak terhitung wisatawan dari luar kota yang ingin bertamasya, namun pengujung lokal bingung untuk menentukan lokasi seusuai dengan keinginan. Oleh sebab itu, diperlukan sistem yang mempermudah wisatawan memilih destinasi berdasarkan kriteria. Sistem pendukung keputusan salah satu solusi untuk memecahkan permasalahan dalam pemilihan destinasi wisata [4]. Dalam penelitian ini akan digunakan teknik pendukung keputusan yaitu Multi-Attribute Utility Theory (MAUT). Kemudian cara Multi-Attribute Utility Theory ialah teknik yang dapat mengkombinasi sesuai atas pengukuran biaya resiko dan memudahkan perhitungan peringkat relatif dari semua alternatif yang dipertimbangkan berdasarkan struktur preferensi pembuat keputusan.

Penelitian terkait pernah dilakukan oleh [5], permasalahan terkait penentuan tujuan wisata, permasalahan seperti itu umumnya diselesaikan dengan mengambil keputusan, untuk mempersingkat waktu calon pengunjung memberikan pendapat bahwa dengan membuat sistem pendukung untuk pemilihan tujuan wisata. Solusi dari permasalahan tersebut, memberikan informasi yang luas dan memberikan akses untuk pengujung dalam pencarian tempat wisata dengan menggunakan mobile. Hasil dari penelitian ini berhasil mengimplementasi sebuah aplikasi untuk pemilihan tujuan wisata menggunakan Weighted Product, sehingga wisatawan memperoleh informasi lokasi wisata dan deskripsi sejarah wisata tersebut.

1

Kemudian penelitian lainnya dilakukan oleh [6]. Permasalahan yang terjadi kadang-kadang kebanyakan pengujung merasa bingung untuk menentukan tempat wisata yang ingin dikunjungi di Kabupaten Simalungun. Solusi untuk memecahkan permasalahan yang tertera, membuat aplikasi yang mampu merekomendasi tujuan wisata sesuai penilaian para pengujung. Hasil yang diperoleh yaitu objek wisata Bukit Indah Simarjarunjung.

Berdasarkan penjabaran permasalahan serta penelitian terkait, penulis akan melaksanakan pembuatan sistem pendukung keputusan Destinasi Wisata Di Kota Pangkal Pinang Menggunakan MAUT (*Multi-Attribute Utility Theory*). Alasan menggunakan teknik tersebut dikarenakan metode MAUT mempunyai akurasi yang lebih baik dibandingkan teknik yang umumnya digunakan untuk pengambilan keputusan. selain itu sebelum melakukan perhitungan, terlebih dahulu menentukan kriteria-kriteria yang dijadikan tolak ukur dalam penilaian setiap tujuan wisata.

2. Tinjauan Pustaka

2.1 Sistem Pendukung Keputusan

Sistem pendukung keputusan ialah sistem yang menyediakan informasi, pemodelan berupa grafik dan melakukan manipulasi serta manualisasi data sesuai dengan teknik yang digunakan. Selain itu sistem ini dapat memberikan solusi dalam mengambil keputusan dalam kondisi apapun [7].

Sistem Pendukung Keputusan ditujukan untuk keputusan-keputusan yang memerlukan penilaian atau keputusan-keputusan yang sama sekali tidak dapat didukung oleh algoritma, serta memberikan perangkat interaktif yang memungkinkan dalam pegambilan keputusan dengan berbagai model yang tersedia [8].

Keputusan berdasarkan struktur masalahnya terbagi menjadi 3, yaitu:

- 1. Keputusan Terstruktur
 - Keputusan yang dibuat menurut kebiasaan, aturan, prosedur tertulis ataupun tidak tertulis yang bersifat rutin maupun berulang-ulang. Misalnya, keputusan pemesanan barang dan penagihan piutang.
- Keputusan Tidak Terstruktur Keputusan yang dibuat untuk masalah khusus, khas dan tidak biasa terjadi karena tidak terjadi berulang-ulang. Misalnya, keputusan untuk pengembangan teknologi baru dan merger sebuah perusahaan.

Keputusan Semi Terstruktur Keputusan yang dibuat atau ditentukan oleh komputer dan sebagian keputusan ditentukan oleh pihak pengambilan keputusan. Contohnya, pengendalian stok baru dan penjadwalan kegiatan produksi perusahaan.

2.2 Multi-Attribute Utility Theory (MAUT)

Multi Atribute Utility Theory (MAUT) merupakan suatu skema yang evaluasi akhir, v(x) dari suatu objek x didefinisikan sebagai bobot yang dijumlahkan dengan suatu nilai yang relevan terhadap nilai dimensinya. Pengukuran dan pembobotan dilakukan dengan mempertimbangkan setiap jenis konteks sebagai salah satu atribut item. Pengunaan pendekatan MAUT memungkinkan untuk penyaringan informasi sesuai preferensi pengguna dengan cara mengidentifikasi pengaruh dari beberapa atribut [9].

Multi Atribute Utility Theory (MAUT) juga memberikan kelengkapan data yang dikumpulkan oleh pengguna, selanjutnya dilakukan pemberian nilai bobot. Multi Atribute Utility Theory adanya perubahan yang dilihat dari nilai skala antara 0-1 dimana skala yang bernilai 0 itu termasuk pilihan yang kurang baik, sedangkan nilai 1 itu termasuk ke dalam pilihan baik [10]. Pada dasarnya, prosedur atau langkah-langkah dalam metode MAUT meliputi.

Pada dasarnya, prosedur atau langkah-langkah dalam metode MAUT meliputi:

- Mengambil nilai keputusan dengan dimensi yang berbeda Pada tahap ini, penulis akan mendefinisikan alternatif, kriteria dan menentukan nilai kriteria dari masing-masing alternatif.
- 2. Menentukan nilai bobot alternatif pada masing-masing dimensi.
 - Pada tahap ini, penulis akan mendefinisikan alternatif, kriteria dan menentukan nilai kriteria dari masing-masing alternatif. Nilai bobot kriteria berkisar antara 0 1 atau 0% 100% jika menggunakan persentase. Jumlah total bobot semua kriteria harus bernilai 1 atau 100% sehingga tidak ada bobot kriteria yang bernilai negatif.
- 3. Normalisasi matriks Pada tahap ini, penulis akan memasukkan nilai utility untuk masing-masing alternatif pada setiap kriteria. Normalisasi matriks akan menghasilkan nilai utility dari tiap alternatif. Rumus persamaan normalisasi matriks dapat dilihat pada persamaan 1.:

$$U_{(x)} = xi - \frac{xi^{-}}{xi^{+-xi^{-}}}$$

Keterangan:

U(x) = Normalisasi Bobot Alternatif x

x = Bobot Alternatif

xi – Bobot terburuk (minimum) dari kriteria ke-x

xi+ = Bobot terbaik (maximum) dari kriteria ke-x

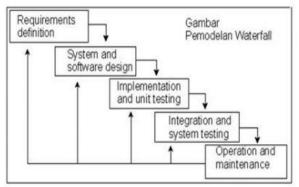
4. Menghitung nilai preferensi Pada tahap ini, penulis akan melakukan perkalian nilai *utility* dengan bobot tiap kriteria untuk memperoleh nilai alternatif. Perhitungan nilai preferensi dapat menggunakan persamaan 2.:

$$V(x) = \sum_{i=1}^{n} w_i v_i$$

Keterangan:

X = objek atau alternatif

V = Nilai total alternatif pilihan kriteria


Wj = Bobot prioritas subkriteria

Vi = Nilai utility setiap kriteria

N = Jumlah sampel penelitian

2.3 Metode Waterfall

Teknik perangkat lunak waterfall biasanya dilakukan dengan pendekatan dimulai dari tingkat keperluan hingga proses menganalisis, pemodelan, melakukan *coding* program, dan pemiliharaan [11].

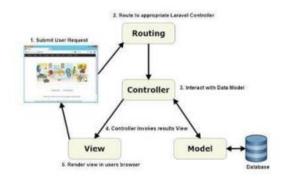
Gambar 1. Bentuk Perangkat Lunak Waterfall

Langkah-langkah teknik perangkat lunak *watefall* [12]:

1. Analisis dan Definisi Kebutuhan

Tahapan pertama, dilakukan pengumpulan data dengan memahami berbagai sumber referensi baik dari jurnal dan lainnya, kemudian melakukan pengamatan langsung mengenai Kota Pangkal Pinang, lalu melakukan wawancara untuk mencari informasi yang nantinya akan dijadikan sebagai data untuk dilakukan proses perhitungan manualisasi.

2. Desain Sistem dan Perangkat Lunak


Kemudian langkah selanjutnya adalah menerjemahkan data yang telah terkumpul, kemudian melakukan perancangan melalui diagram UML sebelum diimplementasikan ke dalam bentuk program.

Implementasi dan Pengujian Unit Tahap selanjutnya mengimplementasikannya ke dalam kode program dengan menggunakan bahasa pemrograman PHP, dan untuk databasenya biasanya menggunakan MySQL.

- 4. Integrasi dan Pengujian Sistem
 Pada tahap keempat, sistem yang telah dibuat
 diuji untuk mengetahui apakah masing-masing
 fungsi memenuhi kebutuhan atau tidak, bahkan
 memeriksa apakah ada kesalahan atau tidak.
- Operasi dan Pemeliharaan
 Dan tahapan terakhir dilakukan pemeliharaan, bisa jadi ada perubahan permintaan pengguna atau lainnya.

2.4 Framework Laravel

Framework Laravel dikembangkan menggunakan aturan model-view dan controller dengan menyediakan code program yang sederhana dan menghemat waktu. selan itu framework laravel memiliki proses routing, dimana dijadikan sebagai jembatan permintaan dari pengguna [13].

Gambar 2. Arsitektur MVC pada Laravel

Laravel harus menangani routing terlebih dahulu sebelum pengguna dapat memasukan controller ke dalam aplikasi. Routing merupakan alat yang penting di laravel, di mana permintaan pengguna harus terlebih dahulu diproses sebelum menuju pada suatu halaman tertentu. Dengan adanya Routing ini membuat laravel sangat cocok digunakan untuk mengimplementasikan API pada aplikasi-aplikasi lain, selain itu tingkat keamanan yang kuat membuat aplikasi skala besar lebih reliabel.

2.5 UML (Unified Modeling Language)

Unified Modeling Language merupakan kumpulan bagan digunakan dalam membangun aplikasi berdasarkan orientasi objek [14]. Unified Modeling Language (UML) juga digunakan untuk menggambarkan rancangan aplikasi yang akan dibuat sesuai aktor yang diperlukan. [15]. UML mempunyai beragam diagram yaitu:

2.6 Use Case Diagram

Tabel 1. Simbol-Simbol Use Case Diagram

Simbol	Nama	Keterangan
犬	Aktor	Menggambarkan pengguna pada sistem yang menggunakan kata benda.
UseCase1	Use case	Menggambarkan aktivitas yang dilakukan oleh setiap aktor dengan diberi nama kata kerja.
	Assosias i	Menggambarkan penghubung aktor dengan use case.
•	Include	Menggambarkan untuk melakukan pekerjaan harus melakukan pekerjaan lain terlebih dahulu.
•	Extends	Menggambarkan untuk melakukan pekerjaan tersebut jika terdapat pekerjaan yang tidak sesuai atau kondisi khusus.

2.7 Activity Diagram

Tabel 2. Simbol-Simbol Activity Diagram

Simbol	Nama	Keterangan
•	Start Point	Awal aktivitas pada activity diagram.
•	End Point	Akhir aktivitas.
	Activities	Proses/kegiatan bisnis.

	Fork / Percabangan	Untuk menggambarkan kegiatan yang dilakukan secara paralel atau penggabungan dua kegiatan menjadi satu kegiatan.
	Join (Penggabungan) / Rake	Menggambarkan adanya dekomposisi.
•	Decision Point	Menggambarkan pilihan untuk pengambilan keputusan, <i>True</i> dan <i>False</i> .
	Swimline	Pembagian activity diagram untuk menunjukkan siapa melakukan apa.

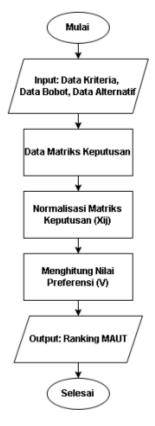
2.8 Sequence Diagram

Tabel 3. Simbol-Simbol Sequence Diagram

Simbol	Nama	Keterangan
Object 1	Objek/Aktor	Setiap aktor dari masing-masing kelas itu dinamakan objke. Dan simbol garis putus- putus itu garis objek.
	Kegiatan	Memperlihatkan kegiatan setiap aktor.
Message 1	Pesan	Keterkaitan diantara objek dengan lainnya, bertujuan menyampaikan fungsi pada aktor lain yang dimana bagian operasi itu termasuk kelas.
Message 2	Return	Adanya respon balik dari aktor lain.

2.9 Black Box Testing

Black Box Testing adalah pengujian yang melihat dari output yang diperoleh sistem sebagai hasil dari sebuah input yang disebut sebagai fungsional testing [16]. Black Box Testing juga digunakan saat rancangan aplikasi sudah diselesaikan dengan tujuan mengetahui keutamaan sistem dan kebutuhan fungsionalitas dari sistem yang telah direncanakan dan disetujui dari awal [17]. Black Box Testing digunakan dengan tujuan untuk berusaha menemukan kesalahan dalam beberapa kategori yaitu:


- 1. Kesalahan fungsi yang tidak sesuai atau hilang.
- 2. Kesalahan suatu sistem.
- 3. Kesalahan dalam struktur data atau akses *database* eksternal.
- 4. Kesalahan kinerja.

2.10 Perancangan Proses

Dalam proses pembuatan sebuah sistem, rancangan diperlukan dapat mengetahui dari proses yang telah dibuat lalu dalam perancangan proses terdiri dari yaitu *use case*, diagram aktivitas, diagram urutan dan diagram kelas.

3. Hasil Perhitungan

3.1 Perancangan Metode MAUT

Gambar 3. Flowchart Algoritma MAUT

Pada perhitungan MAUT SPK Pemilihan Destinasi Wisata kaidah pembobotan nilai KPI KPI berkisar antara 0 - 1 atau antara 0% - 100% jika menggunakan presentase dan jumlah total bobot semua KPI harus bernilai 1 (100%), tidak ada bobot yang bernilai negatif.

Tabel 4. Data Kriteria

N	Kriteria	Kode Kriteria	Bobot	Normalisasi Bobot	Deskripsi Kriteria	Nil ai												
П					< 500 m	5												
					501 - 1 km	4												
1	Jarak	Cl	10	0,1	1,1 - 3 km	3												
					3,1 - 5 km	2												
					> 5 km	1												
					< 1 menit	5												
					1,1 - 3 menit	4												
2	Waktu Perjalanan	C2	10	0,1	3,1 - 5 menit	3												
	reijaiaiiaii				5,1 - 7 menit	2												
					> 7 menit	1												
					< Rp 5000	5												
			30	30		Rp 5001 - Rp 6000	4											
3	Harga Tiket	C3			30	30	30	30	30	30	30	30	30	30	30	30	30	0,3
					Rp 7001 - Rp 8000	2												
					> Rp 8000	1												
					Sangat Baik	5												
	Sarana dan	C4	C4	C4	C4				20		Baik	4						
4	Sarana dan Prasarana					C4	C4	C4		0,2	Cukup Baik	3						
									Kurang	2								
					Tidak Baik	1												
					Sangat Baik	5												
					Baik	4												
5	Keamanan	C5	20	0,2	Cukup Baik	3												
					Kurang	2												
					Tidak Baik	1												
					Sangat Baik	5												
					Baik	4												
6	Kebersihan	C6	10	0,1	Cukup Baik	3												
					Kurang	2												
					Tidak Baik	1												

Tabel 5. Data Alternatif

No	Jenis Wisata	Alternatif	Kode Alternatif
1		Tugu Nol Kilometer	A1
2		Pasir Padi Bay	A2
3	Wisata Buatan	Wisata Buatan Rumah Jendela Inspirasi	
4		Babel Bhay Park	A4
5		Alun-Alun Taman Merdeka	A5
6		Perigi Pekasem	A6
7		Masjid Al Mukarrom Tuatunu	A7
8		Kelekak Community	A8
9	Wisata Budaya	Kampung Melayu Tuatunu	A9
10		Kampoeng Tige Oerang	A10
11		Hutan Kota	A11
12		Masjid Raya Tuatunu	A12
13		Lapangan Golf Girimaya	
14	Wisata Olahraga	Stadion Depati Amir	A14
15		Gor Depati Bahrein	A15
16		Taman Kolong Wisata	A16
17		Pantai Tanjung Bunga	
18	Wisata Pesisir	Wisata Pesisir Kelenteng Shen Mu Miau	
19		Bangka Botanical Garden	A19
20		Pantai Pasir Padi	
21		Rumah Sakit Bakti Timah	A21
22		Post Telegraaf En Telefoondienst	A22
23		Tjung Hoa Kung Mu Yen	A23
24	Wisata Sejarah	Kerkhof Kerkhof	
25	w isata Sejarah	Societeit Condordia	A25
26		Masjid Jamik	A26
27		Makam Misionaris \$ Bruder	A27
28		Kelenteng Kwan Tie Miaw	A28

Tabel 6. Data Indikator Penilaian

Indikator	Nilai
Sangat Baik	5
Baik	4
Cukup	3
Buruk	2
Sangat Buruk	1

Tabel 7. Data Matriks Keputusan

Kode Alternatif		Kriteria							
	C1	C2	C3	C4	C5	C6			
A1	5	2	1	2	5	2			
A2	2	5	4	5	3	1			
A3	4	4	2	4	3	1			
A4	3	2	3	2	4	4			
A5	5	3	2	2	4	4			
A6	2	5	3	3	3	2			
A7	4	3	4	2	4	3			
A8	5	5	3	2	3	4			
A9	4	5	4	4	3	1			
A10	1	2	4	5	3	4			
A11	2	5	3	2	4	2			
A12	3	3	4	2	3	3			
A13	3	4	2	2	4	2			
A14	4	5	1	2	3	2			
A15	3	4	4	5	4	3			
A16	5	3	3	2	3	4			
A17	3	2	2	3	3	3			
A18	5	4	4	5	3	4			
A19	2	3	3	5	3	1			
A20	3	5	4	5	3	2			
A21	4	3	3	5	5	1			
A22	4	5	1	3	4	3			
A23	2	4	1	5	3	4			
A24	5	4	3	4	3	4			
A25	2	3	3	2	5	1			
A26	3	3	4	2	5	3			

A27	5	4	2	2	5	3
A28	2	5	4	5	3	4

Normalisasi Matriks Keputusan Rumus menghitung normalisasi:

$$U_{(x)} = \frac{(X - Xi^{-})}{(Xi^{+} - Xi^{-})}$$

Tabel 8. Diketahui Data Min Max Matriks Keputusan

Kode Alternatif			Krit	eria		
Rode Alternatii	C1	C2	C3	C4	C5	C6
A1	5	2	1	2	5	2
A2	2	5	4	5	3	1
A3	4	4	2	4	3	1
A4	3	2	3	2	4	4
A5	5	3	2	2	4	4
A6	2	5	3	3	3	2
A7	4	3	4	2	4	3
A8	5	5	3	2	3	4
A9	4	5	4	4	3	1
A10	1	2	4	5	3	4
A11	2	5	3	2	4	2
A12	3	3	4	2	3	3
A13	3	4	2	2	4	2
A14	4	5	1	2	3	2
A15	3	4	4	5	4	3
A16	5	3	3	2	3	4
A17	3	2	2	3	3	3
A18	5	4	4	5	3	4
A19	2	3	3	5	3	1
A20	3	5	4	5	3	2
A21	4	3	3	5	5	1
A22	4	5	1	3	4	3
A23	2	4	1	5	3	4
A24	5	4	3	4	3	4
A25	2	3	3	2	5	1

A26	2	3	4	2	4	3
A27	5	4	3	4	5	2
A28	2	5	4	5	3	4
Min	1	2	1	2	3	1
Max	5	5	4	5	5	4

Misalnya Menghitung Normalisai A1 pada C1:

$$U_{(A1,C1)} = \frac{(5-1)}{(5-1)}$$
$$U_{(A1,C1)} = \frac{(4)}{(4)}$$
$$U_{(A1,C1)} = 1$$

Tabel 9. Hasil Perhitungan Normalisasi Matriks Keputusan

Kode			Krit	eria		
Alternatif	C1	C2	СЗ	C4	C 5	C6
						0,33333333
A1	1	0	0	0	1	3
	0,2					
A2	5	1	1	1	0	0
	0,7	0,66666666	0,33333333	0,66666666		
A3	5	7	3	7	0	0
			0,66666666		0,	
A4	0,5	0	7	0	5	1
		0,33333333	0,33333333		0,	
A5	1	3	3	0	5	1
	0,2		0,66666666	0,33333333		0,33333333
A6	5	1	7	3	0	3
	0,7	0,33333333			0,	0,66666666
A7	5	3	1	0	5	7
			0,66666666			
A8	1	1	7	0	0	1
	0,7			0,66666666		
A9	5	1	1	7	0	0
A10	0	0	1	1	0	1
	0,2		0,66666666		0,	0,33333333
A11	5	1	7	0	5	3
A12	0,5	0,33333333	1	0	0	0,66666666

	I	3			l	7
		0,66666666	0,33333333		0.	0,33333333
A13	0,5	7	3	0	5	3
	0,7					0,33333333
A14	5	1	0	0	0	3
		0,66666666			0,	0,66666666
A15	0,5	7	1	1	5	7
		0,33333333	0,66666666			
A16	1	3	7	0	0	1
			0,33333333	0,33333333		0,66666666
A17	0,5	0	3	3	0	7
		0,66666666				
A18	1	7	1	1	0	1
	0,2	0,33333333	0,66666666			
A19	5	3	7	1	0	0
						0,33333333
A20	0,5	1	1	1	0	3
	0,7	0,33333333	0,66666666			
A21	5	3	7	1	1	0
	0,7			0,33333333	0,	0,66666666
A22	5	1	0	3	5	7
	0,2	0,66666666				
A23	5	7	0	1	0	1
		0,66666666	0,66666666	0,66666666		
A24	1	7	7	7	0	1
	0,2	0,33333333	0,66666666			
A25	5	3	7	0	1	0
	0,2	0,33333333			0,	0,66666666
A26	5	3	1	0	5	7
		0,66666666	0,66666666	0,66666666		0,33333333
A27	1	7	7	7	1	3
	0,2 5					
A28	5	1	1	1	0	1

4) Menghitung Nilai Preferensi (V) Rumus menghitung nilai preferensi:

$$V_{(X)} = \sum_{i=1}^{n} Wij * Xij$$

Misalnya Menghitung Nilai Preferensi pada A1:

$$\begin{split} V_{(A1)} &= (0.1*1) + (0.1*0) + (0.3*0) + (0.2*0) + (0.2*1) \\ &+ (0.1*0.333333333) \end{split}$$

$$V_{(A1)} = 0.3333333333$$

Tabel 10. Hasil Perhitungan Nilai Preferensi

No	Kode Alternatif	Nilai Preferensi (V)	Ranking	Ranking Uniq
1	Al	0,333333333	26	26
2	A2	0,625	7	7
3	A3	0,375	24	24
4	A4	0,45	17	17
5	A5	0,433333333	19	19
6	A6	0,425	21	21
7	A7	0,575	11	11
8	A8	0,5	13	13
9	A9	0,608333333	8	8
10	A10	0,6	9	9
11	All	0,458333333	16	16
12	A12	0,45	17	18
13	A13	0,35	25	25
14	A14	0,208333333	28	28
15	A15	0,783333333	1	1
16	A16	0,433333333	19	20
17	A17	0,283333333	27	27
18	A18	0,766666667	2	2
19	A19	0,458333333	14	15
20	A20	0,683333333	6	6
21	A21	0,708333333	5	5
22	A22	0,408333333	22	22
23	A23	0,391666667	23	23
24	A24	0,6	9	10
25	A25	0,458333333	14	16
26	A26	0,525	12	12
27	A27	0,733333333	3	3
28	A28	0,725	4	4

Tabel 11. Output Ranking MAUT

Ranking	Kode Alternatif	Kode Alternatif Nama Alternatif	
1	A15	Gor Depati Bahrein	Wisata Olahraga
2	A18	Kelenteng Shen Mu Miau	Wisata Pesisir
3	A27	Makam Misionaris \$ Bruder	Wisata Sejarah
4	A28	Kelenteng Kwan Tie Miaw	Wisata Sejarah
5	A21	Rumah Sakit Bakti Timah	Wisata Sejarah
6	A20	Pantai Pasir Padi	Wisata Pesisir
7	A2	Pasir Padi Bay	Wisata Buatan
8	A9	Kampung Melayu Tuatunu	Wisata Budaya
9	A10	Kampoeng Tige Oerang	Wisata Budaya
10	A24	Kerkhof	Wisata Sejarah
11	A7	Masjid Al Mukarrom Tuatunu	Wisata Budaya
12	A26	Masjid Jamik	Wisata Sejarah
13	A8	Kelekak Community	Wisata Budaya
14	A19	Bangka Botanical Garden	Wisata Pesisir
15	A25	Societeit Condordia	Wisata Sejarah
16	A4	Babel Bhay Park	Wisata Buatan
17	A12	Masjid Raya Tuatunu	Wisata Budaya
18	A5	Alun-Alun Taman Merdeka	Wisata Buatan
19	A16	Taman Kolong Wisata	Wisata Pesisir
20	A6	Perigi Pekasem	Wisata Budaya
21	A22	Post Telegraaf En Telefoondienst	Wisata Sejarah
22	A23	Tjung Hoa Kung Mu Yen	Wisata Sejarah
23	A3	Rumah Jendela Inspirasi	Wisata Buatan
24	A11	Hutan Kota	Wisata Budaya
25	A13	Lapangan Golf Girimaya	Wisata Olahraga
26	Al	Tugu Nol Kilometer	Wisata Buatan
27	A17	Pantai Tanjung Bunga	Wisata Pesisir
28	A14	Stadion Depati Amir	Wisata Olahraga

4. Kesimpulan

Setelah melakukan perancangan dan pembangunan aplikasi pada sistem pendukung keputusan pemilihan destinasi wisata di Kota Pangkal Pinang, maka kesimpulan yang didapat adalah:

- Penelitian ini berhasil membangun aplikasi sistem pendukung keputusan pemilihan destinasi wisata di Kota Pangkal Pinang yang dapat memudahkan pengunjung memilih destinasi wisata di Kota Pangkal Pinang.
- 2. Mengetahui hasil implementasi dari (*Multi-Attribute Utility Theory*) dalam memberikan informasi yang diperoleh berdasarkan keputusan alternatif tempat wisata.

REFERENSI

- [1] Satria, A. dan S., "SPK: ALGORITMA MULTI-ATTRIBUTE UTILITY THEORY (MAUT) PADADESTINASI TUJUAN WISATA LOKAL DI KOTA SIDAMANIK," (Journal of Computer Engineering System and Science), pp. 168-172, 2018.
- [2] N. K. Sukerti, "SISTÉM PENDUKUNG KEPUTUSAN MENGGUNAKAN SIMPLE ADDITIVE WEIGHTING METHODE (SAW) DALAM MEREKOMENDASIKAN OBJEK WISATA DI PULAU NUSA PENIDA," Seminar Nasional Royal (SENAR), p. 93 – 98, 2018.
- [3] Afriansyah dan F., "Pembuatan Sistem Informasi Retribusi Pelayanan Kesehatan Hewan Kota Pangkalpinang," *Jurnal Pengabdian Kepada Masyarakat*, pp. 242-253, 2022.
- [4] Amri, H. dan R., "Penerapan Multi Attribute Utility Theory(MAUT) Dalam Pemilihan Pewarna Rambut," Seminar Nasional Sains dan Teknologi Informasi (SENSASI), p. 599 – 602, 2021.
- [5] Setiawan, P. dan S. , "SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN DESTINASI WISATA FAVORIT DI PROPINSI YOGYAKARTA DENGAN METODE WEIGHTED PRODUCT (WP) BERBASIS ANDROID," COMPILER, pp. 58-68, 2017.
- [6] Ningsih, H. dan W., "Penerapan Sistem Pendukung Keputusan Pada Pemilihan Objek Wisata di Simalungun," Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), pp. 731 - 735, 2019.
- [7] W. Ikmah, "SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN TEMPAT WISATA PURWOREJO MENGGUNAKAN METODE SAW," Seminar Nasional Teknologi Informasi dan Multimedia, pp. 91-96, 2018.
- [8] Ernawati, H. dan F., "RANCANG BANGUN SISTEM PENDUKUNG KEPUTUSAN KENAIKAN JABATAN PEGAWAI DENGAN METODE PROFILE MATCHING," Jurnal Sistem Informasi, pp. 127-134, 2017
- [9] Safitri, S. dan R., "Sistem Pendukung Keputusan Pembelian Mobil Baru Dengan Menggunakan Metode Multi Attribute Utility Theory (Maut)," *Jurnal Ilmiah ILKOMINFO*, pp. 85-92, 2021.
- [10] Ramadiani dan rahmah, "Sistem Pendukung keputusan pemilihan tenaga kesehatan teladan menggunakan metode Multi-Attribute Utility Theory," *Jurnal Ilmiah Teknologi Sistem Informas*, pp. 1-12, 2019.

- [11] Maulana Hasanudin, "RANCANG DAN BANGUN SISTEM INFORMASI INVENTORI BARANGBERBASIS WEB (STUDI KASUS PT. NUSANTARA SEJAHTERA RAYA)," *Jurnal IKRA-ITH*, pp. 24-37, 2018.
- [12] Darmansah, S. R. Widiasari dan Raswini, "PERANCANGAN SISTEM INFORMASI INVENTARIS BERBASIS WEBSITE MENGGUNAKAN METODE WATERFALL," *Jurnal Ilmiah KLIK*, vol. 9, no. 1, 2022.
- [13] A. L. Yudanto, H. Tolle dan A. H. Brata, "Rancang Bangun Aplikasi Sistem Informasi Manajemen Laboratorium Biomedik Fakultas Kedokteran Universitas Brawijaya," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, pp. Vol. 1, No. 8, Hlm. 628-634, 2017.
- [14] F. Ayu dan N. Permatasari, "Perancangan Sistem Informasi Pengolahan Data Praktek Kerja Lapangan(Pkl) Pada Devisi Humas PT. Pegadaian," *Jurnal Intra-Tech*, vol. 2, pp. 12-26, 2018.
- [15] Ahmat Josi, "PENERAPAN METODE PROTOTIPING DALAM PEMBANGUNAN WEBSITE DESA," *JTI*, pp. 50-57, 2017.
- [16] C. Tristianto, "Penggunaan Metode Waterfall Untuk Pengembangan Sistem Monitoring Dan Evaluasi Pembangunan Pedesaan," *Jurnal Teknologi Informasi* ESIT, vol. 12, pp. 7-21, 2018.
- [17] A. Rizaldi, V. H. Pranatawijaya dan P. B. A. A. Putra, "Penerapan Antrian dan Pemesanan Online di Aplikasi Pearl Salon And BarberShop Berbasis Mobile," *JOINTECOMS (Journal of Information Technology and Computer Science)*, vol. 1, no. 1, pp. 1-9, 2021.

Andre Blenski, saat ini sebagai Mahasiswa S1 program studi Sistem Informasi Fakultas Teknologi Informasi Universitas Tarumanagara.

Hugeng Hugeng, memperoleh gelar S.T dan M.T dari Universitas Trisakti, Indonesia tahun 1995 dan 1998. Kemudian tahun 2011 memperoleh gelar Dr. dari Universitas Indonesia, Indonesia. Saat ini sebagai Dosen Tetap program studi Teknik Elektro Universitas Tarumanagara.

Tri Sutrisno, memperoleh gelar S.Si dari Universitas Diponegoro, Indonesia tahun 2011. Kemudian tahun 2015 memperoleh gelar M.Sc dari Universitas Gadjah Mada, Indonesia. Saat ini sebagai Dosen Tetap program studi Sistem Informasi Universitas Tarumanagara.