

THE INFLUENCE OF MARKETING MIX ON CUSTOMER LOYALTY AT KOPI JANJI JIWA SUKARAME: ELECTRONIC WORD OF MOUTH AS AN INTERVENING VARIABLE

Meysi Susila Gayatri¹⁾, Andhyka Tyaz Nugraha²⁾, Rizqi Wahyudi³⁾

Program Studi Teknik Industri Institut Teknologi Sumatera

e-mail: ¹⁾meysi.121190138@student.itera.ac.id, ²⁾andhyka.nugraha@ti.itera.ac.id,

³⁾rizqi.wahyudi@ti.itera.ac.id

ABSTRAK

Penelitian ini bertujuan untuk menganalisis pengaruh bauran pemasaran terhadap loyalitas pelanggan, berikut peran Electronic Word of Mouth (E-WOM) sebagai variabel intervensi. Google Form digunakan sebagai instrumen pengumpulan data terhadap 126 pelanggan Kopi Janji Jiwa Sukarame yang dipilih sebagai responden. Partial Least Squares Structural Equation Modeling (PLS-SEM) diaplikasikan dalam penelitian ini dan diolah dengan bantuan software SmartPS 3.0. Temuan kami menunjukkan bahwa seluruh dimensi bauran pemasaran berpengaruh positif terhadap E-WOM dan loyalitas pelanggan. E-WOM juga terbukti mempengaruhi tingkat loyalitas pelanggan serta mampu mengintervensi hubungan antara bauran pemasaran dan loyalitas pelanggan. Temuan tersebut tentu saja mengindikasikan pentingnya pengelolaan strategi pemasaran yang efektif dalam membangun loyalitas pelanggan serta mendorong terjadinya persebaran informasi positif antar konsumen yang berdampak pada keberlangsungan loyalitas konsumen.

Kata kunci: Bauran Pemasaran, Loyalitas Pelanggan, Electronic Word of Mouth, Coffee Shop

ABSTRACT

This study aims to analyze the influence of the marketing mix on customer loyalty, along with the role of Electronic Word of Mouth (E-WOM) as an intervening variable. Google Form was used as the data collection instrument, targeting 126 customers of Kopi Janji Jiwa Sukarame selected as respondents. Partial Least Squares Structural Equation Modeling (PLS-SEM) was applied in this research and processed using SmartPLS 3.0 software. The findings reveal that all dimensions of the marketing mix have a positive effect on both E-WOM and customer loyalty. E-WOM was also found to influence customer loyalty positively and to intervene in the relationship between the marketing mix and customer loyalty. These findings highlight the importance of effective marketing strategy management in building long-term customer loyalty while encouraging the spread of positive information among consumers, which ultimately contributes to the sustainability of customer loyalty.

Keywords: Marketing Mix, Customer Loyalty, Electronic Word of Mouth, Coffee Shop

INTRODUCTION

The food and beverage (FnB) industry, particularly in the food and beverage service subsector, continues to exhibit stable growth [1]. This trend is driven by increasing population consumption needs and a lifestyle shift that positions culinary activities as part of daily routines [2] and social identity [3]. According to the 2023 Annual Report by the Badan Pusat Statistik (BPS) of Lampung Province [4], food consumption accounted for 52.19% of monthly per capita spending. This number highlights the region's high demand for food and drink items, as well as the industry's significant economic potential. Alongside this, the shift in consumption patterns also demands that business actors not only offer quality products but also create memorable experiences for customers. Today's consumers are increasingly selective and consider various aspects before making a purchase, including taste quality, service, comfortable place, and business image shaped through digital reviews [5]. Modern consumers tend to be more selective, emphasizing consistent taste, accessible and comfortable facilities, prompt service, and credible online reputations before committing to a purchase.

Competition in the food and beverage service sector is intensifying, as reflected by the 9.29% growth in business establishments in the sector throughout the third quarter of 2024

[6]. This is also supported by the growing role of digital reviews in shaping business image and influencing purchasing decisions [7]. Positive reviews, whether on social media, review sites, or Google Review can significantly strengthen brand perception, attract new customers, and encourage revisits intention, while negative reviews can rapidly erode trust and deter potential customers. In such an environment, the marketing mix framework comprising product, price, place, promotion, people, process, and physical evidence (7P) becomes a crucial strategic tool for delivering a consistently positive customer experience [8]. A potent marketing mix can foster customer loyalty, which is a critical driver of business sustainability [9]. Loyal customers not only engage in repeated transactions but also serve as advocates who spread positive electronic word of mouth (E-WOM) [10]. E-WOM, in turn, plays a pivotal role in enhancing brand visibility, influencing the purchasing intentions of prospective customers, and reinforcing the loyalty of existing ones. Conversely, negative E-WOM can have an equally powerful but detrimental impact, spreading quickly in digital ecosystems and posing a direct threat to business viability.

One of the segments in the FnB industry experiencing rapid growth is the coffee shop. Coffee shops have evolved not only as places to enjoy coffee but also as social and productive spaces for modern society [11]. One of the brands actively competing in this market is Kopi Janji Jiwa, which, since its establishment in 2018, has grown rapidly with more than 900 outlets across over 100 cities in Indonesia, including eight branches in Bandar Lampung City [12]. While the brand has achieved substantial growth, branch-level performance variability remains a challenge, with inconsistencies in service quality potentially undermining brand equity. As of January 25, 2025, Google Review data reveal that the Kopi Janji Jiwa Sukaramo branch has the lowest customer rating among all branches in Bandar Lampung, based on 154 reviews. Table 1 presents a summary of the ratings from all Kopi Janji Jiwa branches in Bandar Lampung City.

Table 1. Kopi Janji Jiwa and Jiwa Toast in Bandar Lampung City

No	Kopi Janji Jiwa Branch	Total Reviews	1 Star	2 Star	3 Star	4 Star	5 Star	Rating
1	Sukaramo	154	23	7	9	29	86	4,0
2	Kedaton	325	7	4	21	60	92	4,6
3	Tirtayasa	78	9	0	1	7	61	4,5
4	Imam Bonjol	675	70	23	37	94	451	4,3
5	Unila	225	12	1	14	31	157	4,5
6	Kedamaian	146	2	2	5	14	123	4,7
7	Diponegoro	173	8	0	7	24	134	4,6
8	Campang Raya	22	1	1	2	4	16	4,3

The low rating received by the Kopi Janji Jiwa Sukaramo branch is supported by numerous customer complaints expressed through Google Review. These complaints cover several aspects of the marketing mix, including limited facilities, inconsistent product quality, unoptimal employee service, and a preparation process that is considered excessively lengthy. To obtain more objective information regarding the actual conditions, the researcher conducted direct observations from April 21 to May 1, 2025. The observation revealed that certain facilities were lacking, such as the absence of a prayer room. In terms of product quality, the taste was generally consistent, although on the last day of observation, the matcha latte was noticeably sweeter than usual. The cup seals were generally secure, however, according to information from staff, seal cup issues often occurred in take-away orders. Regarding service quality (people), greetings and welcoming gestures from employees were inconsistent, although staff generally maintained a friendly demeanor and smiled at customers. For the process aspect, serving time was short and not problematic. Based on these findings, several customer complaints recorded on Google Review were not encountered directly during the observation period. This gap suggests that specific issues may have occurred outside the timeframe of the observation or stem from differences in

individual perceptions and experiences. Such discrepancies highlight possible inconsistencies in the quality of service delivered, which in turn may contribute to negative customer impressions and hinder the formation of long-term loyalty.

The product, people, and physical evidence components of the marketing mix, if inadequately managed, can generate negative customer experiences. Such experiences often lead to unfavorable E-WOM, which directly impacts customer loyalty. If unaddressed, these issues threaten the sustainability of Kopi Janji Jiwa Sukaramo. Therefore, it is crucial to investigate how the marketing mix influences both E-WOM and customer loyalty and to understand E-WOM's intervening role. While product quality, physical evidence, and employee performance have been identified as primary concerns, other marketing mix elements like place, promotion, pricing, and service processes may also contribute to the low ratings and must not be overlooked. All seven marketing mix components are essential for success, neglecting any can weaken efforts to build loyalty. Simultaneously, online customer reviews (E-WOM) represent a vital form of customer feedback and a strategic resource for refining marketing strategies aimed at increasing loyalty. Therefore, Kopi Janji Jiwa Sukaramo requires a comprehensive evaluation of its marketing mix components and a thorough examination of the relationships between the marketing mix, customer loyalty, and E-WOM, including the role of E-WOM as an intervening variable in the relationship between the marketing mix and customer loyalty. The findings from this evaluation are expected to provide valuable insights that can guide the development of practical recommendations to improve service consistency and ultimately strengthen customer loyalty at Kopi Janji Jiwa Sukaramo.

RESEARCH METHODOLOGY

The research applied a mixed-method approach, combining both qualitative and quantitative techniques. The process began with designing a questionnaire by formulating statements that reflect the research dimensions, using a 5-point Likert scale for responses. Data were collected through an online survey distributed via Google Form, involving a total of 126 respondents who are customers of Kopi Janji Jiwa Sukaramo.

This study also employs the Partial Least Squares Structural Equation Modeling (PLS-SEM) method, assisted by SmartPLS 3.0 as statistical software. The analysis consists of the measurement model and the structural model [13]. The measurement model involves assessing convergent and discriminant validity as well as instrument reliability through outer loading analysis. The structural model is then used to evaluate the relationships between latent variables by the proposed research hypotheses. The following section presents the conceptual framework and research hypotheses.

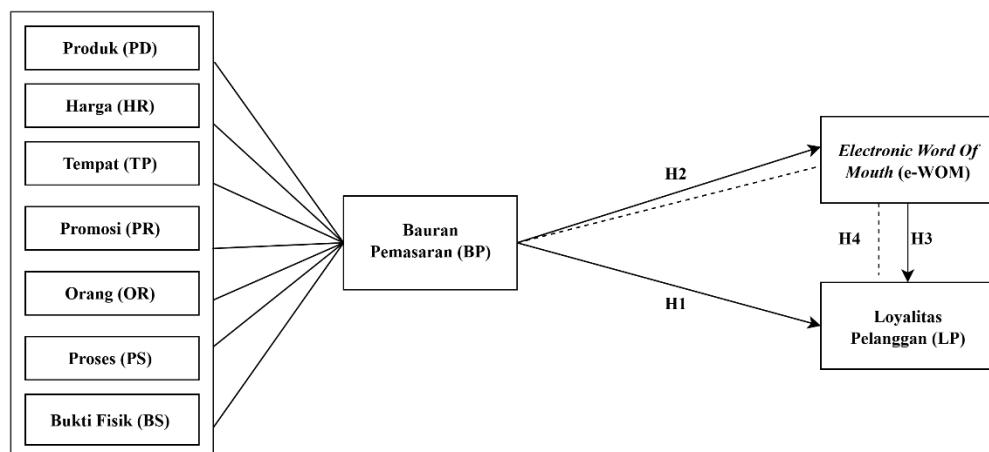


Figure 1. Conceptual Framework Model

Figure 1. illustrates the conceptual framework of the study, highlighting the relationships between the key variables. Based on this model, four hypotheses are formulated to examine both direct and indirect effects among variables, with a particular focus on the marketing mix, E-WOM, and customer loyalty. The proposed hypotheses are as follows:

H1: The marketing mix has a positive impact on customer loyalty.

H2: The marketing mix has a positive impact on E-WOM.

H3: E-WOM has a positive impact on customer loyalty.

H4: E-WOM intervene the relationship between the marketing mix and customer loyalty.

RESULT

Respondent characteristics are presented in Table 2. Overall, the gender distribution shows a relatively balanced proportion between female and male respondents, with a slight difference of 4.8%. The predominance of female respondents suggests a strong engagement in coffee consumption activities and highlights their potential as a promising target market. In terms of age, the majority of respondents are between 17 and 24 years old, categorized as Generation Z, and most are students. This aligns with the location of Kopi Janji Jiwa Sukaramo, which is near educational institutions and several high schools. Regarding employment status, 73% of respondents are not yet employed, while the remaining 27% are likely working in nearby offices or institutions. Interestingly, despite most respondents not having a fixed income, their consumption intensity remains high, with 63% reporting purchases more than three times a month.

Table 2. Respondent Characteristics

Gender	Frequency	Total	Percentage
Female	66	126	52,4%
Male	60		47,6%
Age	Frequency	Total	Percentage
<17 years	1		0,8%
17 - 24 years	102	126	85%
25 - 32 years	22		17,5%
>32 years	1		0,8%
Employment Status	Frequency	Total	Percentage
Employed	34	126	27%
Unemployed	92		73%
Purchase Frequency/Month	Frequency	Total	Percentage
>3	80	126	63%
< 3	46		36,5%

The initial step after data collection is to conduct construct validity testing to ensure that each indicator accurately represents the measurement construct. Convergent validity was assessed to evaluate how strongly the items or dimensions within a construct correlate with one another [14]. This test was conducted for both the lower order constructs and higher order constructs, with the results presented in Table 3. The findings indicate that all dimensions in the lower-order constructs have met the criteria for convergent validity, as evidenced by AVE values exceeding the minimum threshold of 0.500. An improvement in the AVE value for the PR dimension was observed following the elimination of specific items, demonstrating that the item removal process effectively enhanced measurement quality. Similarly, all dimensions in the higher-order constructs also achieved AVE values above 0.500. These results confirm that the model developed in this study has fulfilled the overall requirements for convergent validity and is considered reliable for measuring the intended constructs.

Table 3. Convergent Validity

Dimention	Lower Order Construct		Dimention	Higher Order Construct	
	AVE Before Elimination	AVE After Elimination		AVE	
PD	0,754	0,754			
HR	0,799	0,799			
TP	0,732	0,732			
BS	0,626	0,626	BP	0,644	
PR	0,477	0,626			
PS	0,606	0,606			
OG	0,531	0,531			
LP	0,598	0,598	LP	0,602	
EWOM	0,601	0,601	EWOM	0,598	

Following the convergent validity assessment, the next step is to evaluate discriminant validity, ensuring that each dimension represents its intended construct more strongly than it does other constructs [15]. This evaluation refers to the cross loading values, where an indicator is considered valid if it has the highest loading on the construct it is intended to measure. The results of the discriminant validity test for the lower-order constructs are presented in Table 4.

Table 4. Discriminant Validity of the Lower Order Constructs Before Elimination

Item	PD	HR	TP	PR	PS	OG	BS	LP	EWOM
PD1	0,869	0,462	0,409	0,485	0,39	0,526	0,456	0,509	0,551
PD2	0,859	0,573	0,53	0,522	0,502	0,559	0,585	0,524	0,577
PD3	0,878	0,525	0,463	0,591	0,424	0,577	0,556	0,469	0,492
PD4	0,829	0,463	0,47	0,442	0,483	0,539	0,564	0,535	0,473
PD5	0,884	0,518	0,406	0,547	0,456	0,523	0,528	0,491	0,575
PD6	0,884	0,549	0,399	0,493	0,385	0,551	0,494	0,533	0,559
PD7	0,861	0,458	0,404	0,532	0,443	0,549	0,518	0,51	0,508
PD8	0,895	0,458	0,443	0,407	0,532	0,549	0,518	0,51	0,508
HR1	0,502	0,873	0,62	0,528	0,552	0,536	0,551	0,454	0,488
HR2	0,608	0,935	0,645	0,562	0,645	0,688	0,647	0,493	0,54
HR3	0,505	0,893	0,575	0,501	0,506	0,557	0,55	0,46	0,523
HR4	0,53	0,88	0,541	0,471	0,54	0,574	0,515	0,43	0,427
HR5	0,462	0,887	0,615	0,577	0,591	0,558	0,518	0,45	0,427
TP1	0,482	0,527	0,84	0,601	0,535	0,498	0,554	0,443	0,471
TP2	0,398	0,535	0,857	0,553	0,519	0,559	0,601	0,457	0,442
TP3	0,4	0,59	0,862	0,521	0,493	0,521	0,49	0,475	0,415
TP4	0,497	0,655	0,863	0,62	0,635	0,567	0,559	0,479	0,457
TP5	0,382	0,558	0,854	0,593	0,508	0,547	0,577	0,414	0,347
PR1	0,415	0,51	0,531	0,824	0,428	0,353	0,444	0,392	0,359
PR2	-0,017	0,082	0,044	0,184	-0,015	0,069	0,04	0,012	0,082
PR3	0,394	0,416	0,547	0,775	0,474	0,496	0,481	0,328	0,408
PR4	0,406	0,478	0,532	0,772	0,49	0,524	0,506	0,377	0,286
PS1	0,335	0,36	0,365	0,365	0,782	0,387	0,452	0,348	0,337
PS2	0,591	0,576	0,644	0,553	0,795	0,643	0,665	0,469	0,434
PS3	0,492	0,523	0,495	0,448	0,717	0,478	0,472	0,306	0,315
PS4	0,412	0,501	0,435	0,424	0,817	0,446	0,506	0,429	0,398
OG1	0,507	0,5	0,396	0,457	0,5	0,719	0,434	0,39	0,418
OG2	0,456	0,44	0,459	0,441	0,399	0,723	0,452	0,341	0,432
OG3	0,358	0,459	0,452	0,418	0,442	0,741	0,461	0,381	0,406
OG4	0,508	0,504	0,523	0,357	0,508	0,73	0,449	0,444	0,4
BS1	0,536	0,495	0,472	0,458	0,546	0,483	0,839	0,452	0,422
BS2	0,473	0,51	0,559	0,533	0,565	0,514	0,792	0,384	0,403
BS3	0,421	0,357	0,447	0,398	0,483	0,357	0,764	0,356	0,359
BS4	0,475	0,529	0,549	0,494	0,532	0,543	0,77	0,447	0,359
BS5	0,493	0,556	0,539	0,481	0,568	0,523	0,791	0,496	0,505
LP1	0,355	0,374	0,396	0,346	0,352	0,414	0,416	0,743	0,426
LP2	0,391	0,327	0,355	0,271	0,317	0,412	0,383	0,772	0,481
LP3	0,392	0,399	0,361	0,319	0,335	0,303	0,418	0,728	0,483
LP4	0,518	0,42	0,404	0,404	0,423	0,39	0,404	0,789	0,598
LP5	0,576	0,45	0,519	0,412	0,504	0,532	0,483	0,831	0,577
EWOM1	0,419	0,447	0,382	0,258	0,333	0,41	0,361	0,46	0,712
EWOM2	0,468	0,461	0,469	0,412	0,403	0,497	0,416	0,551	0,843
EWOM3	0,546	0,373	0,372	0,358	0,373	0,435	0,419	0,52	0,787
EWOM4	0,443	0,414	0,37	0,352	0,37	0,42	0,374	0,492	0,777
EWOM5	0,507	0,406	0,352	0,341	0,389	0,435	0,455	0,568	0,753

Table 4 presents the cross-loading values from the first stage of discriminant validity testing. At this stage, several items did not meet the established criteria, leading to their elimination. The cross-loading values after this elimination process are shown in Table 5.

Table 5. Discriminant Validity of the Lower Order Constructs After Elimination

Item	PD	HR	TP	PR	PS	OG	BS	LP	EWOM
PD1	0,869	0,462	0,409	0,485	0,39	0,526	0,456	0,509	0,551
PD2	0,859	0,573	0,53	0,522	0,502	0,559	0,585	0,524	0,577
PD3	0,878	0,525	0,463	0,591	0,424	0,577	0,556	0,469	0,492
PD4	0,829	0,463	0,47	0,442	0,483	0,539	0,564	0,535	0,473
PD5	0,884	0,518	0,406	0,547	0,456	0,523	0,528	0,491	0,575
PD6	0,884	0,549	0,399	0,493	0,385	0,551	0,494	0,533	0,559
PD7	0,861	0,458	0,404	0,532	0,443	0,549	0,518	0,51	0,508
HR1	0,502	0,873	0,62	0,528	0,552	0,536	0,551	0,454	0,488
HR2	0,608	0,935	0,645	0,562	0,645	0,688	0,647	0,493	0,54
HR3	0,505	0,893	0,575	0,501	0,506	0,557	0,55	0,46	0,523
HR4	0,53	0,88	0,541	0,471	0,54	0,574	0,515	0,43	0,427
HR5	0,462	0,887	0,615	0,577	0,591	0,558	0,518	0,45	0,427
TP1	0,482	0,527	0,84	0,601	0,535	0,498	0,554	0,443	0,471
TP2	0,398	0,535	0,857	0,553	0,519	0,559	0,601	0,457	0,442
TP3	0,4	0,59	0,862	0,521	0,493	0,521	0,49	0,475	0,415
TP4	0,497	0,655	0,863	0,62	0,635	0,567	0,559	0,479	0,457
TP5	0,382	0,558	0,854	0,593	0,508	0,547	0,577	0,414	0,347
PR1	0,415	0,51	0,531	0,818	0,428	0,353	0,444	0,392	0,359
PR3	0,394	0,416	0,547	0,778	0,474	0,496	0,481	0,328	0,408
PR4	0,406	0,478	0,532	0,776	0,49	0,524	0,506	0,377	0,286
PS1	0,335	0,36	0,365	0,365	0,782	0,387	0,452	0,348	0,337
PS2	0,591	0,576	0,644	0,553	0,795	0,643	0,665	0,469	0,434
PS3	0,492	0,523	0,495	0,448	0,717	0,478	0,472	0,306	0,315
PS4	0,412	0,501	0,435	0,424	0,817	0,446	0,506	0,429	0,398
OG1	0,507	0,5	0,396	0,457	0,5	0,719	0,434	0,39	0,418
OG2	0,456	0,44	0,459	0,441	0,399	0,723	0,452	0,341	0,432
OG3	0,358	0,459	0,452	0,418	0,442	0,741	0,461	0,381	0,406
OG4	0,508	0,504	0,523	0,357	0,508	0,73	0,449	0,444	0,4
BS1	0,536	0,495	0,472	0,458	0,546	0,483	0,839	0,452	0,422
BS2	0,473	0,51	0,559	0,531	0,565	0,514	0,792	0,384	0,403
BS3	0,421	0,357	0,447	0,404	0,483	0,357	0,764	0,356	0,359
BS4	0,475	0,529	0,549	0,499	0,532	0,543	0,77	0,447	0,359
BS5	0,493	0,556	0,539	0,483	0,568	0,523	0,791	0,496	0,505
LP1	0,355	0,374	0,396	0,346	0,352	0,414	0,416	0,743	0,426
LP2	0,391	0,327	0,355	0,271	0,317	0,412	0,383	0,772	0,481
LP3	0,392	0,399	0,361	0,319	0,335	0,303	0,418	0,728	0,483
LP4	0,518	0,42	0,404	0,404	0,423	0,39	0,404	0,789	0,598
LP5	0,576	0,45	0,519	0,412	0,504	0,532	0,483	0,831	0,577
EWOM1	0,419	0,447	0,382	0,255	0,333	0,41	0,361	0,46	0,712
EWOM2	0,468	0,461	0,469	0,412	0,403	0,497	0,416	0,551	0,843
EWOM3	0,546	373	0,372	0,356	0,373	0,435	0,419	0,52	0,787
EWOM4	0,443	0,414	0,37	0,352	0,37	0,42	0,374	0,492	0,777
EWOM5	0,507	0,406	0,352	0,345	0,389	0,435	0,455	0,568	0,753

Table 5 displays the results of the second-stage testing for the lower-order constructs in assessing discriminant validity. The findings reveal that each item has a higher correlation with its respective construct than with other constructs, indicating that the discriminant validity for the lower-order constructs has been achieved.

Table 6. Discriminant Validity of the Higher Order Constructs

Item	BP	EWOM	LP	Item	BP	EWOM	LP
PD	0,759	0,566	0,546	EWOM1	0,462	0,711	0,460
HR	0,791	0,525	0,494	EWOM2	0,545	0,843	0,550
TP	0,819	0,494	0,524	EWOM3	0,513	0,786	0,519
PR	0,772	0,447	0,462	EWOM4	0,493	0,779	0,491
PS	0,802	0,504	0,508	EWOM5	0,515	0,753	0,568
OG	0,827	0,591	0,542	LP1	0,483	0,426	0,748
BS	0,844	0,524	0,546	LP2	0,441	0,481	0,773
				LP3	0,447	0,483	0,729
				LP4	0,507	0,598	0,786
				LP5	0,602	0,577	0,828

The analysis then proceeds to the discriminant validity testing for the higher-order constructs. As shown in Table 6, all indicators consistently exhibit higher cross-loading values with their respective constructs compared to other constructs, demonstrating a strong correlation between each item and the construct it represents. Consequently, all items can be considered discriminantly valid and retained for the next stage of analysis. Building on these results, the study then evaluates the reliability of the measurement model to ensure internal consistency among the indicators within each construct. This assessment considers the outer loading values (≥ 0.700), as well as Cronbach's Alpha and Composite Reliability, both of which are deemed acceptable when exceeding the threshold of 0.700. Table 7 also presents the outer loading results before and after item elimination for the lower-order constructs, alongside the reliability values for the higher-order constructs.

Table 7. Reliability Test

Dimention	Outer Loading			Cronbach Alpha	Composite Reliability	
	Lower Order Construct Before Elimination	Lower Order Construct After Elimination	Higher Order Construct			
BS	BS1	0,841	0,841	0,844		
	BS2	0,792	0,803			
	BS3	0,765	0,765			
	BS4	0,775	0,775			
	BS5	0,773	0,773			
HR	HR1	0,872	0,872	0,791		
	HR2	0,936	0,936			
	HR3	0,889	0,899			
	HR4	0,883	0,883			
	HR5	0,889	0,889			
OG	OG1	0,712	0,727	0,827		
	OG2	0,726	0,726			
	OG3	0,734	0,733			
	OG4	0,732	0,732			
	PD1	0,867	0,867			
PD	PD2	0,858	0,858	0,759	0,909	0,927
	PD3	0,883	0,883			
	PD4	0,832	0,832			
	PD5	0,883	0,883			
	PD6	0,857	0,857			
PR	PD7	0,895	0,895	0,772	0,802	0,819
	PR1	0,811	0,806			
	PR2	0,172	-			
	PR3	0,764	0,767			
	PR4	0,796	0,800			
PS	PS1	0,763	0,765	0,837	0,883	0,819
	PS2	0,801	0,804			
	PS3	0,751	0,751			
	PS4	0,795	0,781			
	TP1	0,837	0,837			
TP	TP2	0,853	0,853	0,711	0,802	0,802
	TP3	0,859	0,859			
	TP4	0,865	0,865			
	TP5	0,862	0,862			
	EWOM1	0,712	0,712			
EWOM	EWOM2	0,843	0,844	0,837	0,883	0,819
	EWOM3	0,787	0,786			
	EWOM4	0,777	0,777			
	EWOM5	0,753	0,753			
	LP1	0,743	0,743			
LP	LP2	0,772	0,772	0,840	0,881	0,819
	LP3	0,728	0,728			
	LP4	0,789	0,789			
	LP5	0,831	0,743			

Table 7 shows that one of the question items, namely PR2 in the marketing mix variable, has an outer loading value below 0.700. As it does not meet the reliability testing threshold, this item was removed from the model. Following the elimination process, all remaining items demonstrated outer loading values exceeding 0.700, indicating that no further eliminations were necessary. Therefore, the remaining items can be considered

reliable and suitable for use in the subsequent model testing stage. The next step involves testing the structural model, beginning with an evaluation of potential multicollinearity using the Variance Inflation Factor (VIF). As shown in Table 8, all dimensions in the model have VIF values ranging from 1.587 to 2.665, which are below the threshold of 5 and still fall within the ideal range (<3). These findings indicate that the model is free from multicollinearity issues, ensuring that no estimation bias arises from correlations among independent variables.

Table 8. Variance Inflation Factor (VIF)

Dimention	VIF	Dimention	VIF
EWOM1	1,682	OG	2,286
EWOM2	2,231	PD	1,856
EWOM3	2,032	PR	2,113
EWOM4	2,025	PS	2,181
EWOM5	1,552	TP	2,551
LP1	1,708	HR	2,049
LP2	1,840	BS	2,581
LP3	1,595		
LP4	1,838		
LP5	2,054		

Subsequently, the evaluation of the R_{Square} value was carried out to assess the extent to which the independent variables contribute to explaining the variance of the dependent variables. According to the established criteria, an R_{Square} value is considered substantial if it is greater than 0.670, moderate if it is greater than 0.330 but less than 0.670, and weak if it is greater than 0.190 but less than 0.330. Table 9 shows that the R_{Square} value for E-WOM is 0.420 and for Customer Loyalty is 0.527, both of which fall into the moderate category. This indicates that the model is reasonably capable of explaining the variables in the study.

Table 9. R_{Square}

	R_{Square}	$R_{\text{Square Adjusted}}$
EWOM	0,427	0,422
LP	0,525	0,517

Table 10 presents the results of hypothesis testing for indirect relationships, showing that all t-stat values are greater than 1.960 at a 5% significance level. Hence, all hypotheses concerning indirect relationships are accepted.

Table 10. Direct Relationships

Direct Relationships	Original Sample	Mean Sample	Standard Deviation	T Statistics	P Values
BP -> EWOM	0.653	0.655	0.065	10.100	0.000
BP -> LP	0.365	0.365	0.124	2.946	0.003
EWOM -> LP	0.432	0.435	0.118	3.659	0.000

Table 10 confirms that the marketing mix has a positive effect on both customer loyalty and E-WOM. The product dimension characterized by consistent taste and quality creates a positive experience that encourages repeat purchases. Affordable pricing, perceived as aligned with product quality, enhances value perception and strengthens customer loyalty. Location factors, such as convenient parking and a comfortable environment, improve the overall customer experience. Promotional efforts through social media and digital programs are also seen as effective in building brand loyalty. The “people” dimension, reflected in service quality and staff knowledge, fosters customer trust, while the process dimension, fast and efficient service, further supports a positive impression. Physical evidence, including the ambiance and interior design, reinforces emotional attachment to the brand.

These exact dimensions also contribute to the formation of E-WOM. Consistent product quality, fair pricing, and attractive promotions motivate customers to share their experiences online. Convenience, service efficiency, and meaningful staff interactions increase the likelihood that customers will spread digital word of mouth. The inviting

atmosphere and well designed interior serve as visual stimuli, prompting customers to share their impressions on digital platforms. Ultimately, positive E-WOM helps build trust and strengthen customer loyalty. Peer recommendations and reviews play a vital role in shaping repurchase decisions and long-term loyalty toward Kopi Janji Jiwa Sukaramo. Table 11 shows that the t-statistic values for the indirect relationship between the marketing mix and customer loyalty through E-WOM are greater than 1.960, indicating statistical significance. However, despite this significance, the overall analysis reveals that the direct influence of the marketing mix on customer loyalty is more substantial than its indirect influence via E-WOM.

Table 11. Indirect Relationships

Indirect Relationships	Original Sample	Sample Mean	Standard Deviation	T Statistics	P Values
BP -> EWOM -> LP	0,282	0,285	0,084	3,340	0,001

This indicates that E-WOM on Google Reviews has the potential to reduce customer loyalty derived from various marketing mix dimensions. Therefore, it is essential to evaluate and optimize the marketing mix to ensure consistent service quality, so that every customer enjoys a uniform experience during their visit. One effective measure is the development of Standard Operating Procedures (SOPs) explicitly tailored for Kopi Janji Jiwa Sukaramo. The proposed SOPs focus on service procedures, product packaging for take-away orders, and facility maintenance particularly restroom facilities. These efforts should be supported by ongoing initiatives such as regular staff training, periodic performance evaluations based on customer feedback, and strict enforcement of consistent service standards to maintain quality over time.

The service SOP begins by requiring every employee to greet customers with a smile, a greeting, and a salutation (commonly referred to as the 3S approach) as they enter the outlet. Cashiers are then expected to inquire politely about the customer's order and when necessary, provide transparent and standardized information regarding the menu items. To support sales performance, upselling techniques are encouraged through the offering of additional products, bundled packages, or ongoing promotional items. Once the order is confirmed, the cashier communicates the total amount and asks for the customer's preferred method of payment. For digital transactions such as QRIS, staff must verify and store proof of payment before proceeding. A receipt is then issued, along with an estimated preparation time, especially during peak hours.

After the transaction, the order is forwarded to the preparation staff, who are responsible for ensuring that standard procedures are followed to prepare all items. Before the product is handed over, a final quality check is conducted to confirm presentation, accuracy, and overall condition. When the order is ready, the customer's name is called, and the product is delivered with a friendly gesture and a thank-you message. For take-away packaging, staff must ensure that beverage seals are adequately secured and leak-proof to maintain product quality during transport. To guarantee stability and reduce the chance of spills, orders should be placed in plastic bags according to size and quantity, especially for drinks. Customers should be reminded to hold the bag upright and not apply pressure that could damage the product when it is handed over. The SOP also covers facility maintenance to keep patrons in a secure and welcoming environment.. Regular inspections of toilet are necessary to guarantee their cleanliness, appropriate operation, and the presence of necessary supplies like tissues, soap, clean water, and sufficient lighting.

CONCLUSION

According to the analysis's findings, every component of the marketing mix has a positive impact on customer loyalty at Kopi Janji Jiwa Sukaramo. Proper management of

these elements, ranging from product quality, pricing strategy, promotional activities, place or location, people, process, to physical evidence, creates a consistently satisfying customer experience that encourages repeat purchases and stimulates positive recommendations. The results also reveal a strong positive correlation between Electronic Word of Mouth (E-WOM) and the marketing mix, indicating that satisfied customers are more likely to share their positive experiences online. This not only boosts brand visibility but also plays a crucial role in shaping favorable public perceptions, which in turn strengthens long-term loyalty. These findings highlight the importance of optimizing each component of the marketing mix as an integrated strategy to enhance both the customer experience and the generation of positive E-WOM. In response, this study proposes the development of Standard Operating Procedures (SOPs) covering key operational aspects such as service quality, packaging design, safety, and facility maintenance. The consistent application of these SOPs is expected to maintain service standards, improve customer satisfaction, and secure the brand's competitive advantage in the increasingly dynamic coffee shop market.

REFERENCE

- [1] Badan Pusat Statistik, *Statistik Penyediaan Makanan dan Minuman*, vol. 7, Badan Pusat Statistik, 2024.
- [2] Rumnah, Hamidah, and Marsiah, "Makanan dan minuman yang baik dan halal menurut Islam," *Cendekia J. Ilmu Pengetah.*, vol. 2, no. 3, pp. 223–231, 2022.
- [3] I.N. Hakim and S. Hamidah, "Peran Kuliner Tradisional dalam Mendukung Pemajuan Kebudayaan di Destinasi Pariwisata Prioritas Yogyakarta," *Mozaik Hum.*, vol. 21, no. 2, pp. 193–208, 2022, doi: 10.20473/mozaik.v21i2.29444.
- [4] Badan Pusat Statistik Provinsi Lampung, *Provinsi Lampung Dalam Angka 2024*, BPS Provinsi Lampung, 2024.
- [5] M. Nasir, "Studi perilaku konsumen terhadap keputusan pembelian air minum aqua di kota surakarta," *Benefit J. Manaj. dan Bisnis*, vol. 12, no. 1, pp. 57–83, 2009, doi: 10.23917/benefit.v12i1.1278.
- [6] Badan Pusat Statistik, "Berita Resmi Statistik," 2024. [Daring]. Tersedia pada: <https://www.bps.go.id/id/pressrelease/2024/11/05/2382/ekonomi-indonesia-triwulan-iii-2024-tumbuh-1-50-persen--q-to-q-.html>
- [7] Mustamim, D. Sirojuddin, and M.S.I. Waqfin, "Manajemen Sumber Daya Manusia (SDM) dalam Meningkatkan Kualitas Pendidikan di SMA 1 Darul Ulum," *J. Educ. Dev.*, vol. 8, no. 4, pp. 275–280, 2020.
- [8] Sutianingsih and Y. Samodra, "Peran Loyalitas Pelanggan pada Marketing Mix Terhadap Keputusan Konsumen," *Ris. Manaj. dan Akunt.*, vol. 12, no. 2, pp. 56–67, 2021, doi: 10.36600/rma.v12i2.220.
- [9] A. Rizkyta, Widayanto, and N. Farida, "Pengaruh eWOM (Electronic Word of Mouth) dan Kualitas Pelayanan Terhadap Loyalitas Konsumen Melalui Kepuasan Sebagai Variabel Intervening (Studi pada Konsumen Shopee Kota Semarang)," *J. Ilmu Adm. Bisnis*, vol. 13, no. 1, pp. 58–67, 2024.
- [10] C.A. Wardhani, A. Sugianto and B. Hermana, "Pengaruh Kualitas Layanan Logistik, Kepuasan Pelanggan, dan Citra Merek Terhadap Loyalitas Pelanggan Jasa Logistik Menggunakan Structural Equation Model," *J. Ilm. Tek. Ind.*, vol. 8, no. 1, pp. 56–68, 2020, doi: 10.24912/jitiuntar.v8i1.5761.
- [11] P. Arisanti, "Tren Gaya Hidup Milenial, Identitas Sosial dan Desain Coffe Shop," *J. Manaj. Bisnis*, vol. 18, no. 4, pp. 579–590, 2021.
- [12] Jiwa Group, "Janji Jiwa," PT Luna Boga Narayan. Diakses: 13 Februari 2025. [Daring]. Tersedia pada: <https://jiwagroup.com/id/brand/detail/1/JanjiJiwa>

- [13] R. Fitriani and A.T. Nugraha, “Analisis Pengaruh Material Kemasan, Tampilan Kemasan, Bentuk Kemasan, Dan Informasi Pada Kemasan Terhadap Minat Beli Makanan Khas Lampung Keripik Pisang,” *J. Ilm. Tek. Ind.*, vol. 12, no. 1, pp. 33–40, 2024, doi: 10.24912/jitiuntar.v12i1.29047.
- [14] T.D. Andini and E. Pramana, “Penentuan Faktor kredibilitas Toko Online Melalui Pendekatan Peran Estetika Secara Impiris,” *Snatika*, vol. 03, pp. 12–21, 2015.
- [15] N.N. Sahda, N. Yusnita, and T.T. Irawan, “Pengaruh Lingkungan Kerja Dan Kepuasan Kerja Terhadap Kinerja Karyawan PT Faco Global Engineering,” *NAMARA J. Manaj. Pratama*, vol. 1, no. 2, pp. 28–41, 2024.