Gamma Irradiation Effect on the Callus Growth and Shoot Regeneration of Pogostemon cablin Benth.

Main Article Content

Rut Normasari
Estri Laras Arumingtyas
Rurini Retnowati
Wahyu Widoretno

Abstract

Abstract. Patchouli is an essential producer of patchouli oil in the perfume industry, and its production needs to be increased to meet market demand. In vitro mutagenesis using gamma irradiation has the potential to produce superior patchouli plants. This study aimed to evaluate the effect of gamma irradiation on callus growth and shoot formation on patchouli callus. Calli were gamma-irradiated at doses of 0, 15, 30, 45, 60, and 75 Gy, then cultured on Murashige and Skoog (MS) medium with the addition of 0.1 mg.L-1 NAA and 0.3 mg.L-1 BA for four weeks. The results showed that gamma irradiation inhibited callus growth and shoot formation. Gamma irradiation increased the percentage of explant browning and decreased explant survival, explant formation of shoots, the total number of shoots, number of shoots/explants, fresh weight of callus and shoots, growth index, and growth rate. The higher the dose of gamma irradiation, the smaller the percentage of explant survival and the lower the ability to form shoots with an average number of shoots formed less. The percentage of explants that survived on callus without irradiation and at a low dose of 15 Gy reached 100%, with an average number of shoots formed between 4.34-5.63 shoots/explant. Meanwhile, the percentage of explants that survived at high doses of 60-75 Gy was 76-82%, with an average number of shoots formed about two shoots/explant. The lethal dose (LD20) for explant survival was 67.98 Gy.

Article Details

Section
Articles

References

L. Wu, Y. Wu, Q. Guo, S. Li, K. Zhou, and J. Zhang, J. Med. Plant Research 5, 4549–4559 (2011).

H. M. Dummond, J. Perfum. Essent. Oil 51, 484–492 (1960).

H. G. Ramya, V. Palanimuthu, and S. Rachna, Agric. Eng. Int. CIGR e-journal 15, 243–250 (2013).

T. A. van Beek and D. Joulain, Flavour Fragr. Journal 33, 6–51 (2018).

K. Rekha, M. K. Bhan, and A. K. Dhar, J. Essent. Oil Research 21, 135–137 (2009).

V. L. Chopra, Curr. Science 89, 353–359 (2005).

N. A. Hasbullah, R. M. Taha, A. Saleh, and N. Mahmad, Hortic. Brasileira 30, 252–257 (2012).

K. Naito, M. Kusaba, N. Shikazono, and T. Takano, Genetics 169, 881–889 (2005).

M. Ashraf, A. A. Cheema, M. Rashid, and Z. U. Q. Qamar, Pakistan J. Botany 35, 791–795 (2003).

S. Suhesti, M. Syukur, A. Husni, and R. S. Hartati, “Increased genetic variability of sugarcane through gamma ray irradiation,” in Strengthening Sustainable Agriculture through Development of Local Products and Innovative Technologies and Practices-2020, IOP Conf. Series: Earth and Environmental Science 653, edited by S. B. Sulistyo et al. (IOP Publishing, Bristol, UK, 2021), pp. 1-8.

L. Tshilenge-Lukanda, A. Kalonji-Mbuyi, K. K. Nkongolo, and R. V. Kizungu, Am. J. Plant Science 4, 2186–2192 (2013).

H. S. El-Beltagia, O. K. Ahmed, and W. El-Desouky, Radiat. Phys. Chemistry 80, 968–976 (2011).

A. Patil, P. Suryavanshi, and D. Fulzele, J. Anal. Pharm. Research 7, 569–573 (2018).

N. N. Dung, E. Szoki, and G. Verzar-Petri, Acta Bot. Acad. Sci. Hungaricae 27, 325–333 (1981).

E. G. Mendonça, L. V. Paiva, V. C. Stein, M. F. Pires, B. R. Santos, and F. J. Pereira, Brazilian Arch. Biol. Technology 55, 887–896 (2012).

Y. Li, T. Meng, Y. Wang, and X. Zhang, Biotechnol. Biotechnol. Equipment 30, 277–283 (2016).

H. Laukkanen, L. Rautiainen, E. Taulavuori, and A. Hohtola, Tree Physiology 20, 467–475 (2000).

A. Ashouri Sheikhi, H. Hassanpour, P. Jonoubi, M. Ghorbani Nohooji, and M. S. Nadimifar, J. Med. Plants 15, 122-131 (2016).

A. Hernández-Soto, J. Pérez, R. Fait-Zúñiga, R. Rojas-Vásquez, A. Gatica-Arias, W. Vargas-Segura, and A. Abdelnour-Esquivel, Plants 11, 375 (2022).

K. Padmadevi and M. Jawaharlal, Floric. Ornam. Biotechnology 5, 74–77 (2011).

A. Majeed, Z. Muhammad, H. Ahmad, and A. U. R. Khan, Am. J. Sustain. Agriculture 3, 424–427 (2009).

S. K. Chaudhuri, Radiat. Phys. Chemistry 64, 131–136 (2002).

S. G. Wi, B. Y. Chung, J. Kim, and J. Kim, Micron 38, 553–564 (2007).

M. Venkateshwarlu, J. Environ. Biology 29, 789–792 (2008).

D. Puchooa, Int. J. Agric. Biology 7, 12–20 (2005).

B. Al-Safadi and R. Elias, Sci. Horticulturae 127, 290–297 (2011).

B. K. Banerji and S. K. Datta, J. Nucl. Agric. Biology 21, 73–79 (1992).

S. Suhesti, M. Susilowati, N. Sirait, W. Haryudin, and E. Hadipoentyanti, “Improvement of drought tolerance of patchouli through gamma irradiation and in vitro selection,” in Improving Added Value of Plantation Crops through Sustainable Innovation-2021, IOP Conf. Series: Earth and Environmental Science 974, edited by S. Wiyono et al. (IOP Publishing, Bristol, UK, 2022), pp. 1-9.

S. Suhesti, N. Khumaida, A. Husni, G. A. Wattimena, M. Syukur, and E. Hadipoentyanti, Int. J. Sci. Basic Appl. Research 23, 370–380 (2015).

E. A. Ferreira, M. Pasqual, and A. T. Neto, Scientia Agricola 66, 540-542 (2009).

J. I. Royani, Sudarsono, L. Abdullah, and S. I. Aisyah, "Radio-sensitivity of irradiated seed, plantlets, callus, and in vitro leaves from Indigofera zollingeriana Miq by gamma rays," in Natural Resources Management and Utilization-2021, IOP Conf. Series: Earth and Environmental Science 913, edited by E. S. Prasedya et al. (IOP Publishing, Bristol, UK, 2021), pp. 1-11.