
International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 703

Repetitive Project Optimization with Dynamic Programming Method

Erica Hosanna1, a) and Oei Fuk Jin1, b)

Author Affiliations
1Universitas Tarumanagara. Jl. Letjen S.Parman no. 1, West Jakarta, Indonesia, 11440

Author Emails:
a) erica.hosanna@gmail.com
b) fukjin.untar@gmail.com

Submitted: March 2023, Revised: April 23 2023, Accepted: May 22, 2023

ABSTRACT
Repetitive Scheduling Method is a scheduling method tailored specifically for projects with repetitive activities.
Project optimization is done to optimize the cost and duration to be as small and fast as they can be, but
applications of project optimization in repetitive projects are inefficient and leaves a lot of room for error.
Research analyses uses dynamic programming with the program Python and Google OR-Tools. This
research starts with designing a set of dynamic programing script for project optimization, testing it on a
project, and comparing it to results based on manual application. Project optimization analyses using dynamic
programming will result on comparisons between cost and duration in a project. The script is then slightly
adjusted and implemented on multiple critical path project. It is concluded that dynamic programming method
is more efficient and faster in project optimization.

INTRODUCTION
Project optimization is an iteration proses to ascertain the optimal duration in a project. Each

activity in the critical path is studied and crashed according to the constraints available. This is done
to ensure that the cost of project crashing will reduce the indirect cost, and thus, will decrease the
total cost of the project.

A repetitive project is a project with repetitive activities. Optimizing a repetitive project proves
to be harder. The best method to optimize a repetitive project is by using arrow diagram network
(ADN) method (Zhang, 2015), and yet, the largest problem of using ADN to optimize the project
is the number of activities that needs to be processed (Bhoyari, 2014), which far exceeds a normal
project. This causes project optimization for repetitive project to be long, arduous, with a lot of
room for error.

Dynamic Programming (DP) is a programming method that can be used for project
optimization (Vanhoucke, 2013). Dynamic programming specializes in solving a problem with
similar sub-problems, in which each sub- problems require 1 optimal solution. The solution
comes in the form of a script, which consists of a combination of commands and statements that
will solve the sub-problem. This, thus, causes a sharp decline of human error in the optimizing
process, limiting the errors only to the script designed, and to the data input. Project optimization
can be separated into several simpler stages, where a script can be designed to solve the problems
of each stage.

The main objective of this research is to optimize a repetitive project schedule using
dynamic programming method, and to develop a script that can solve project optimization

mailto:erica.hosanna@gmail.com
mailto:fukjin.untar@gmail.com

International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 704

problems. The last objective is to know the advantages and disadvantages of using dynamic
programming method in repetitive projects.

Dynamic Programming

Dynamic Programming (DP) is and algorithm technique to solve a problem. The main
principle in dynamic programming is to solve a complex problem by separating it into several
simpler problems, in which these simpler problems have one optimal solution (Vanhoucke,
2013). These solutions are combined to form the optimal solution to the main problem.

A script is a collection of commands and statements in a program that can solve a problem. DP
consists of stages, state and state variables, state transition, and the optimal choice. Each sub-
problem is considered one stage of the main solution. A combination of commands and statements
are used to procure the optimal solution for each stage. These commands and statements are
considered as state and state variables. After the optimal solution for each stage is found, a
statement is needed to connect the solutions. A transition statement is the statement that defines how
one sub-problem is related to other sub-problems. A combination of these items produces the
optimal solution to the main problem.

Repetitive Scheduling Method (RSM)

A project with similar and repetitive activity is called a repetitive project (Harris dan Ioannou,
1998). Repetitive scheduling method (RSM) is a method of scheduling for repetitive projects.
RSM uses the x-axis as the duration and the y axis as the location or number of units. In Fig. 1, Da
is the total duration for activity A of 3 housing units. Activity A starts on the 10th day and ends on
the 16th day. Activity A for the first unit starts on the 10th day and ends on the 12th day. Db is the
duration of activity B for all units

FIGURE 1. Repetitive Scheduling Method (Harris dan Ioannou 1998)

Project Optimization
Project Crashing is a method to reduce the duration of a project that is done systematically

and analytically (Hansen, 2015). Project crashing is done on activities in the critical path. The
chosen activity has the smallest cost slope. Cost slope (CS) is the cost added for every 1 day on
which the activity is crashed. The formula for CS is as follows:

𝐶𝐶𝐶𝐶 = −𝑁𝑁

−𝑁𝑁

Where ND = Normal Duration, CD = Crash Duration, NC= Normal Cost dan CC = Crash Cost.

International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 705

(1)
Project crashing risks adding costs to the project due to the additional resources. These

additional costs can be controlled using Time-Cost Trade Off (Robinson, 1975). Discrete Time-
Cost Trade Off (D-TCTO) is a method of optimalization developed to solve time-cost
problems. D-TCTO calculates 3 costs in each iteration: indirect cost, direct cost, and total cost.
Indirect cost is the daily, weekly, or monthly costs needed for off-field needs such as
administration and management. Direct cost is the cost needed to proceed the project, and total
cost is the sum of direct and indirect cost. D-TCTO is drawn in Fig.2, where the x-axis is the
duration of the project, while y-axis is the cost. The main objective is D-TCTO is to calculate the
duration with the least amount of cost.

FIGURE 2. Discrete Time-Cost Diagram

METHOD

The research begins with collecting project data in the form of documents, which is then
processed for the analyses stage. The first stage is the Pilot Test, where the project
optimization is done both by manual and dynamic programming method. A script is designed
and tested during this stage, and the script is considered a success if the results between manual
and dynamic programming method are similar. The next stage is to test the script against any other
possible projects and it is done to detect any limitations to the script designed. Should there be any
limitations, additional script should be developed then.

RESEARCH RESULTS

Pilot Test
Using 3 housing units as the research object, analyses is done through manual method and

dynamic programming method. Table 1 shows the data needed to build 1 housing unit, which
consists of activities, normal cost, normal duration, crash cost, crash duration, and cost slope.
The indirect cost for the project is Rp. 850.000,00/ day.

ADN diagram for 3 housing unit is displayed in Fig. 3 which shows the relationship of the
activities for those units. The project begins on the 1st node and ends on the 33rd node and the
arrows represent the activities. From Fig.3, it shows that the critical path on this project resides
on node: 1 - 2 - 3 - 4 - 5 - 6 - 14 - 15 - 16 - 17 - 25 - 26 - 27 - 28 - 29 - 30 - 33. Activities on the
aforementioned nodes are: 1A - 1B - 1C - 1D - 1E - 1F2F dum - 2C - 2D - 2E - 2F3F dum - 3C -
3D - 3E - 3H - 3I - 3L and 256 days are required to fully built 3 housing units.

International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 706

TABLE 1. Project Data for 1 Housing Unit

ac
t

Normal Duration
(ND) (days)

Normal
Cost

Crash
Duration

Crash
Cost

Cost
Slope

A 2 2.069.250,0

2 2.069.250,00 -

B 30 8.853.315,0

20 13.853.315,00 500.000,0
 C 28 3,595,500.0

18 8,595,500.00 500.000,0

 D 28 6,650,500.0

18 13,650,500.00 500.000,0
 E 7 10,246,850.0

5 12,246,850.00 400.000,0

 F 21 23,239,950.0

14 24,639,950.00 200.000,0
 H 7 4,165,000.0

5 4,465,000.00 150.000,0

 I 21 9,894,360.0

14 16,894,360.00 1.000.000,0
 J 7 4,560,000.0

7 4,560,000.00 -

G 1 12,000,000.0

1 12,000,000.00 -
L 7 2,090,000.0

5 2,790,000.00 350.000,0

 Tota

 87.404.725,0

 136.704.725,00

FIGURE 3. Arrow Diagram Network (3 Housing Units)

Optimization with Manual Method (Pilot Test)

From the data provided in Fig.3 and Table 1, the project optimization is done manually. In
Stage-0, the direct cost needed is Rp. 262.214.175,00, and the indirect cost for 256 days is Rp.
850.000,00*256 = Rp. 217.600.000,00. Then, the total cost of the project is Rp. 479.814.175,00.
An activity in the critical path with the lowest cost slope is chosen to be optimized. In this case,
activity 3H (between Node 28 – 29) with the cost slope Rp. 150.000,00/ day is chosen. Activity
3H is optimized for 2 days, causing the direct cost to increase as much as Rp. 300.000,00 (Rp.
150.000,00
*2) and indirect cost to decrease as much as Rp. 1.700.000,00. This causes the project duration to

International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 707

be 254 days, thus, the total indirect cost becomes Rp. 215.900.000,00 (Rp 850.000,00*254
days), and direct cost becomes Rp. 262.514.175,00. The total cost for the new schedule is
Rp.478.414.175,00. This proses is repeated until the project can no longer be crashed. The
iteration results can be seen on Table 2.

TABLE 2. Time-Cost Tabel (Manual)
No.

Iteration
Activit
y

Cras
h

Durati
on

Indirect Cost Direct Cost Total Cost

0 - - 256 Rp.

Rp

Rp. 479.814.175,00
1 3H 2 254 Rp.

Rp.

Rp. 478.414.175,00

2 3L 2 252 Rp.

Rp.

Rp. 477.414.175,00
3 1E 2 250 Rp.

Rp.

Rp. 476.514.175,00

4 2E 2 248 Rp.

Rp.

Rp. 475.614.175,00
5 3E 2 246 Rp.

Rp.

Rp. 474.714.175,00

6 1B 10 236 Rp.

Rp.

Rp. 471.214.175,00
7 1C 10 226 Rp.

Rp.

Rp. 467.714.175,00

8 2C 10 216 Rp.

Rp.

Rp. 464.214.175,00
9 3C 10 206 Rp.

Rp.

Rp. 460.714.175,00

10 1D 10 196 Rp.

Rp.

Rp. 457.214.175,00
11 2D 10 186 Rp.

Rp.

Rp. 453.714.175,00

12 3D 10 176 Rp.

Rp.

Rp. 450.214.175,00
13 3I 7 169 Rp.

Rp.

Rp. 451.264.175,00

Optimization with Dynamic Programming Method (Pilot Test)

Project optimization with dynamic programming method is done through the Python
program and OR-Tools module. A script is designed to optimize a project, following the iteration
process found in Fig.4. Two new variables are used during the iteration process, which are
Crashablecritacts Table and Mincostindex. Crashablecritacts Table is a temporary table that will
change on each iteration, which consists of activities that can be crashed during each iteration.
Meanwhile, Mincostindex is the activity chosen from the Crashablecritacts Table for the crashing
process in each iteration. The duration of the Mincostindex activity is then reduced by 1 day. The
script then recalculates the new duration cost. This process is repeated until the resulting duration is
equal to the duration produced with crash duration (CD) in Table 5.

International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 708

FIGURE 4. Arrow Diagram Network (Pilot Test)

The script is used to process the data in Table 1 and Fig.3. The calculation results from the
script shows that the project duration before optimization is 256 days, while a fully optimized
duration is 169 days. A Time-Cost Table produced by Python in this stage can be found in Fig.5.

FIGURE 5. Time-Cost Table for Pilot Test (Dynamic Programming)

Difference between Manual and Dynamic Programming Method
The results from both method, manual (Table 2) and dynamic programming (Fig. 5) are then

analyzed. It shows that cost and duration between Table 2 and Fig. 5 are the same, however, there

International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 709

are several differences in the order of activity chosen to be crashed. On 226 days to 176 days, the
activity chosen to be crashed is activity C and D. The activities chosen to be crashed with manual
method in order is: 1C, 2C, 3C, 1D, 2D and 3D, while the activities chosen to be crashed with
dynamic programming method in order is 1C, 1D, 2C, 2D, 3C, and 3D. The cost slope for activity
C and D are Rp. 500.000,00, thus, the difference is inconsequential because the costs of both
activities are similar.

Figure 6 shows the critical activities schedule produced using the script. The column ‘act’ is
the activity, ‘CP’ is the critical path, in which 1 is part of the critical path while 0 means it is not
part of the critical path. D is the duration of the activity. ST is the start time of activity, while ET is
the finish time of the activity.

FIGURE 6. Critical Activities Schedule (Pilot Test)

Time-Cost Diagram produced from the script is shown in Fig. 7. The minimal cost for the
project is Rp. 450.214.175,00, which means the optimum duration for this project can be found
in the 12th iteration with a total duration of 179 days.

International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 710

FIGURE 7. Time-Cost Diagram (Pilot Test)

Optimization for Project with Multiple Critical Paths
In this stage, the script designed in Pilot Test is tested against another project. The project data

can be found in Fig. 8 and Table 3, with a daily indirect cost of Rp. 85.000,00/day. In this set of
data, there are more than 1 critical path that needs to be handled by Python.

FIGURE 8. Arrow Diagram Network (Multiple Critical Paths)

International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 711

TABLE 3. Project Data (Multiple Critical Paths)
act ND

(Rp. 1.000,00)
NC

(Rp. 1.000,00)
CD

(days)
CS

(days)
A 20 500 9 50
B 11 200 5 5
C 10 100 5 25
D 20 300 9 20
E 11 200 5 20
F 10 100 5 30
G 17 100 10 15
H 5 150 3 25
Tot

 1650

Results (Multiple Critical Paths)
Project optimization is done by manual and dynamic programming method, and the results can

be found in Table 4 and Table 5.

TABLE 4. Time-Cost Table for Multiple Critical Paths (Manual)
N
o.

Activi
ty

CS
(Rp.

Cr
ash

D
(days

Total
Cost (Rp.

 0 - 43 5305
1 B 5 1 42 5225
2 G 15 1 41 5155
3 GE 35 1 40 5105
4 GDE 55 5 35 5075
5 AB 55 5 30 4805
6 HDF 75 2 28 4785
7 AC 75 5 23 4735

TABLE 5. Time-Cost Table for Multiple Critical Paths (Dynamic Programming)
N
o.

Activit
y

CS
(Rp. 1.000,00)

Cr
ash

D
(day

Total
Cost (Rp.

 0 - 43 5305
1 B 5 2 42 5230
2 G 15 1 41 5160
3 GE 35 1 40 5110
4 GDE 55 5 35 4980
5 HDF 75 5 33 4940
6 DF 50 1 33 4990
7 AB 55 5 28 4835
8 AC 75 5 23 4785

For the script to pass this stage, the Time-Cost Table in Table 5 must be similar to the one done
manually (Table 4), however, there are significant differences in results.

1. Activity B is crashed for 2 days in Table 5 instead of 1 day. The root of the problem can be
seen in the way the script detects the critical paths. In the 1st iteration, there are 2 critical
paths, the first path consists of activities A – G – H and the second path consists of B – C

International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 712

– G – H, and yet, the script can only detect one path, which is the one that consists of B –
C – G – H. Activity B is chosen as Mincostindex as it has the cheapest cost slope, and
yet the script is unable to take into account that to reduce the total duration of the
project, activity A needs to be crashed at the same time as activity B, causing the total cost
slope for crashing activity A and B to be Rp. 55.000,00. The script crashes activity B by
another day, however, the total duration of the project does not decrease, this only causes
A – G – H to be the only critical path for the following iteration, thus, causing most of
the differences found in the next iterations.

2. Activity AB, with a total cost slope of be 55.000,00, which are supposed to be crashed after
activity GDE, and yet is only crashed after activity HDF due to the first point (activity B).

These differences shows that there are 2 main problems for project optimization in the current
script. First, the script’s incapability to detect more than 1 critical path, and second, is the script’s
incapability to take into account the total cost slope of multiple activities. This shows that the
script designed is incapable of processing most projects and thus, needs improvements.

Improvements to the Script (Multiple Critical Paths)
This stage uses the 2nd iteration as an example. The status of all the activities can be found in

Fig. 9. As it is the second iteration, activity B is already crashed by one day.

FIGURE 9. Activity Statuses in 2nd Iteration

The improved script is developed to solve those two problems above. The first problem can be
solved by adding additional constraints that limits the crashing options. In this case, the
constraints are:

- If the duration of activity B equals to the duration of activity A + B, then activity A, B and
C is part of the critical path, thus, the CP for each activity is 1.

- If the duration of activity G + H equals to the duration of activity E + F, then activity G, H,
E and F is part of the critical path, thus, the CP for each activity is 1.

- If the duration of activity G + H equals to the duration of activity E + F and duration of
activity D, then activity G, H, E, F and D is part of the critical path, thus, the CP for each
activity is 1.

- If activity H can no longer be crashed, then activity H, D, E and F cannot be chosen as
mincostindex.

These constraints are project specific and only apply for this project. The improved script
produces a new result table (namely Crashablecritact Table) as shown in Fig.10.

International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 713

FIGURE 10. Crashablecritact Table in 2nd Iteration (After Constraints)

The next problem is solved by fixing the process of choosing Mincostindex. A new temporary
table, labeled jk_opt table, is used to process the choice. Besides activities that are required to be
crashed at the same time at one point of the iteration process, Jk_opt also consists of the total cost
slope for the activity set, and whether all activities in the column that are considered as critical
path or not. In Fig. 10, activity A, B and C are included, therefore, in Jk_opt Table, activity AB
and AC are part of the critical path. Activity A, B and C are thus, removed from the current
Crashablecritact Table to form a new Crashablecritact Table in Fig. 10 (b).

(a) Jk_opt Table (b) Crashablecritact Table

FIGURE 11. Crashablecritact Table and Jk_opt Table in 2nd Iteration

Jk_opt table is used in tandem with the crashablecritact table to decide which activity needs
to be crashed.

Additional constrains are added to choose between the two tables.
1. If the CP of all activities in Jk_opt Table is equals to 0, then the activity chosen

will be from the Crashablecritact Table.
2. If there are no activities in Crashablecritact Table, then the activity chosen will be from the

Jk_opt Table.
3. If the CP of some activities in Jk_opt Table and Crashablecritact Table is equals to 1, then

the activity chosen will be the one with the lowest total cost slope between the two table.
In this case, the options available are activity AB and AC from Jk_opt Table, and activity

G and H from Crashablecritact Table. The chosen activity is thus, activity G with 15 cost slope,
which is the lowest cost slope (CS) between the 4 options.

New Results using the Improved Script

The improved script produces a time-cost table that is similar to Table 4. This shows that with
additional commands and constraints, the script is capable of handling a project with multiple
critical paths.

The newly improved script is tested against the data project on Pilot Test to ensure that the
script is still capable of handling project with one critical path. The results produced is similar the
time-cost table on Fig.5.

The newly improved script is shown to be capable of handling projects with several critical

International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 714

paths and numerous of activities. With this, the script is declared completed.

CONCLUSION
Optimizing repetitive project schedule with dynamic programming method is possible to be

done. With dynamic programming, it is possible to produce a Cost-Time Table and to choose the
correct activity to be optimized. Dynamic programming is capable of producing start time and
finish time of a critical activity, however, it cannot produce the start time and the finish time of a
non-critical activity.

The script designed can be used for optimizing the duration of a repetitive project. The script
designed works as intended, and is capable of making a Time-Cost Table that is similar to the one
done manually.

After designing the script, project crashing using dynamic programming method can be repeated
easily. Any errors made in the commands or the data inputs can be revised, and the Python
program recalculates the inputs and gives out the new results accordingly. This flexibility also
provides another advantage. The dynamic programming script for project crashing developed in
this research can be used to solve similar projects by changing the data and slightly adjusting
the script.

With this, it is concluded that the usage of dynamic programming is more efficient and
faster in project optimization.

The script designed in this research can be found in:
1. Pilot Test Script:
https://github.com/ericah-untar/ericah-untar/blob/main/.projectcrashing1jalurkritis
2. Multiple Critical Paths Script:
https://github.com/ericah-untar/ericah-untar/blob/main/.projectcrashinglebihdari1jalurkritis

REFERENCES

1. Bhoyar, S., & Parbat, D. (2014). Repetitive project scheduling: developing CPM-like

analytical capabilities. International Journal of Civil Engineering, 3(5), 37-46.
Journal of Civil Engineering, vol. 3, no. 5, 2014, pp. 37 - 46.

2. Del Pico, W. J. (2023). Project control: Integrating cost and schedule in construction. John
Wiley & Sons.

3. Hamdan, D. (2014). Model Kepemimpinan & system Pengambilan Keputusan. Bandung:
Pustaka Setia.

4. Handoko, T. H. (2000). Manajemen Personalia dan Sumber Daya Manusia BPFE.
5. Hansen, S. (2015). Manajemen kontrak konstruksi. Gramedia Pustaka Utama.
6. Harris, R. B., & Ioannou, P. G. (1998). CENTER FOR CONSTRUCTION ENGINEERING

AND MANAGEMENT.
7. Hegazy, T., Saad, D. A., & Mostafa, K. (2020). Enhanced repetitive-scheduling computation

and visualization. Journal of Construction Engineering and Management, 146(10), 04020118.
8. Idris, I. (2014). Learning NumPy Array. Packt Publishing Ltd.

https://github.com/ericah-untar/ericah-untar/blob/main/.projectcrashing1jalurkritis
https://github.com/ericah-untar/ericah-untar/blob/main/.projectcrashinglebihdari1jalurkritis

International Journal of Application on Sciences, Technology and Engineering
(IJASTE)
Volume 1, Issue 2,2023.ISSN:2987-2499

https://doi.org/10.24912/ijaste.v1.i2.703-715 715

9. Ioannou, P. G., & Yang, I. T. (2016). Repetitive scheduling method: Requirements, modeling,
and implementation. Journal of Construction Engineering and Management, 142(5),
04016002.

10. McKinney, W. (2012). Python for data analysis: Data wrangling with Pandas, NumPy, and
IPython. " O'Reilly Media, Inc.".

11. Molin, S., & Jee, K. (2021). Hands-On Data Analysis with Pandas: A Python data science
handbook for data collection, wrangling, analysis, and visualization. Packt Publishing Ltd.

12. Mueller, J. P. (2023). Beginning programming with Python for dummies. John Wiley & Sons.
13. O'brien, J. J. (1993). CPM in construction management.
14. Didier, F., Perron, L., Mohajeri, S., Gay, S. A., Cuvelier, T., & Furnon, V. (2023). OR-Tools'

Vehicle Routing Solver: a Generic Constraint-Programming Solver with Heuristic Search for
Routing Problems.

15. Vanhoucke, M. (2012). Project management with dynamic scheduling (pp. 1-14). Springer
Berlin Heidelberg.

16. Zhang, L. H. (2015). Repetitive project scheduling: Theory and methods. Elsevier.

	INTRODUCTION
	METHOD
	RESEARCH RESULTS
	Optimization for Project with Multiple Critical Paths
	CONCLUSION
	REFERENCES

