Nilai Budaya Indigenous Sebagai Pendukung Sustainable Development di Era Industri 4.0. Jakarta, 2 Desember 2021

MATERIAL REQUIREMENT PLANNING PADA PRODUKSI KEMASAN MAKANANRINGAN DI PT. XYZ

Bratayuda Raya¹, I Wayan Sukania²

Program Studi Teknik Industri, Universitas Tarumanagara *E-mail: brata.yuda19@gmail.com*,

Program Studi Teknik Industri, Universitas Tarumanagara *Email: wayans@ft.untar.ac.id*

ABSTRACT

PT. XYZ is engaged in printing and packaging. In the production process, this company uses several raw materials such as duplex, ink, glue, and UV Chemical. The availability of these materials must be planned so that the production process can run well and meet consumer demand. The MRP method used by the factory is the same for all materials, namely LFL, even though LFL is not always effective for every material, especially in terms of cost. Therefore, another method is needed as a comparison, the method used is Fixed Lot Size, Least Unit Cost, Least Total Cost and Economic Order Quantity. The data obtained from the company's primary source. The result is that Duplex material is recommended to use the LUC method at a cost of Rp. 9,724,865, Cyan ink using the LUC method at a cost of Rp. 904,899, Magenta ink using the LTC method at a cost of Rp. 857,292, Yellow Ink using the LTC method at a cost of Rp. 945,772, Black Ink with the LUC method at a cost of Rp. 697,005, Orange Ink with LTC method with a fee of Rp. 3,314,760, Red Ink with the LUC method at a cost of Rp. 769,665, UV Chemical with LUC method with a cost of Rp. 457.124, adhesive glue using the LTC method at a cost of Rp. 699,339

Keywords: MRP, Lot for Lot, Least Unit Cost, Least Total Cost, Economic Order Quantity

ABSTRAK

PT. XYZ bergerak pada bidang *printing* dan *packaging*. Pada proses produksinya perusahaan ini menggunakan beberapa bahan baku seperti dupleks, tinta, lem, dan UV *Chemical*. Material material tersebut harus direncanakan ketersediaannya sehingga proses produksi bisa berjalan baik dan memenuhi permintaan konsumen. Metode MRP yang digunakan pabrik adalah sama untuk semua material yaitu LFL padahal LFL tidak selalu efektif untuk setiap material terutama dari sisi biaya. Oleh karena itu perlu metode lain sebagai pembanding, metode yang digunakan yaitu *Fixed Lot Size*, *Least Unit Cost*, *Least Total Cost* dan *Economic Order Quantity*. Data data yang diperoleh berasal dari sumber primer perusahaan Hasilnya Material Dupleks disarankan menggunakan metode LUC dengan biaya sebesar Rp. 9.724.865, Tinta cyan menggunakan metode LUC dengan biaya sebesar Rp. 904.899, Tinta magenta menggunakan metode LTC dengan biaya sebesar Rp. 857.292, Tinta Yellow dengan metode LTC dengan biaya sebesar Rp. 697.005, Tinta *Orange* dengan metode LTC dengan biaya sebesar Rp. 3.314.760, Tinta *Red* dengan metode LUC dengan biaya sebesar Rp. 769.665, UV Chemical dengan metode LUC dengan biaya sebesar Rp. 457.124, lem perekat dengan metode LTC dengan biaya sebesar Rp. 699.339

Kata Kunci: MRP, Lot for Lot, Least Unit Cost, Least Total Cost, Economic Order Quantity,

1. PENDAHULUAN

PT. XYZ bergerak pada bidang manufaktur printing dan packaging, yang menangani proses pembuatan kemasan makanan ringan. Produk yang dihasilkan berupa kotak kemasan makanan ringan seperti kemasan superstar, beng beng, dan nabati. PT. XYZ memproduksi kurang lebih tiga puluh ribu kemasan makanan ringan per harinya dari berbagai pesanan, dengan pesanan yang cukup banyak tersebut tentunya proses produksi yang dilakukan membutuhkan mesin mesin canggih dan modern serta metode perencanaan dan pengendalian kualitas yang tepat, guna memenuhi permintaan produksi yang cukup tinggi tersebut. Proses produksi yang terdapat pada PT. XYZ dimulai dari proses pemotongan kertas dupleks, *printing*, *coating*, *ponding*, pengopekan, lalu terakhir proses pengeleman dan packaging.

Semakin tinggi permintaan maka bahan baku yang diolah juga semakin banyak, bahan baku yang semakin banyak tersebut harus dikelola dengan baik agar terpakai secara efisien dan efektif [1].

Nilai Budaya Indigenous Sebagai Pendukung Sustainable Development di Era Industri 4.0. Jakarta, 2 Desember 2021

Salah satu tahap yang harus dilakukan dalam mengelola bahan baku adalah menentukan berapa banyak bahan baku yang harus dipesan, guna memenuhi permintaan produksi [2]. Apabilajumlah bahan baku yang dipesan terlalu banyak maka dapat menyebabkan penumpukan bahan baku yang akan berakibat pada kerusakan bahan baku dan kerugian perusahaan [3]. Sebaliknya jika bahan baku yang dipesan terlalu sedikit maka proses produksi bisa terlambat bahkan terhambat karena kekurangan bahan baku, bisa juga terjadi kerugian karena harus memesan bahan baku berulang ulang [4]. Proses perencanaan kebutuhan material juga berpengaruh pada biaya yang akan dikeluarkan perusahaan, tentunya perusahaan harus menggunakan metode perencanaan kebutuhan material dengan biaya yang rendah namun tetap dapat memenuhi permintaan konsumen [5]. Oleh karena itu perlu metode yang efektif untuk menentukan jumlah bahan baku yang harus dipesan oleh perusahaan sehingga di dapat jumlah yang efektif dan efisien serta biaya yang memadai guna memenuhi permintaan produksi [6]. PT Honeycomb juga merupakan tempat yang cocok untuk mempelajari lebih lanjut tentang perencanaan dan pengendalian produksi.

2. METODE PENELITIAN

Penelitian ini bertujuan untuk mengetahui metode mana yang paling tepat dalam merencanakan kebutuhan material pada proses produksi kemasan makanan ringan di PT XYZ. Diperlukan sejumlah data yang harus diketahui agar bisa menyusun metode perencanaan kebutuhan material, data data ini berasal dari sumber primer yaitu dokumen produksi PT XYZ. Beberapa data yang diperlukan adalah data tender tahun 2021, biaya pesan dan biaya simpan masing masing material dan bill of material. Setelah data data yang diperlukan terkumpul maka selanjutnya peneliti melakukan simulasi perencanaan kebutuhan material untuk memenuhi permintaan konsumen menggunakan metode *Lot for Lot, Fixed Lot Size, Least Unit Cost, Least Total C*ost, dan *Economic Order Quantity*. Setelah simulasi dilakukan maka selanjutnya peneliti membandingkan besarnya biaya yang diperlukan masing masing metode untuk memenuhi kebutuhan konsumen. Pada saat melakukan perbandingan peneliti mencari biaya yang terendah dari kelima metode yang disimulasikan, setelah ditemukan metode dengan biaya terendah maka metode tersebutlah yang akan digunakan dalam perencanaan kebutuhan material untuk memenuhi permintaan konsumen

3. HASIL DAN PEMBAHASAN

Pada pembahasan ini kita akan menggunakan material dupleks sebagai contoh perhitungan dan simulasi. Langkah langkah perhitungan dan simulasi yang dilakukan pada material dupleks juga diterapkan pada material yang lain. Terlebih dahulu kita harus mengetahui jumlah material dupleks yang akan digunakan untuk memenuhi permintaan konsumen, jumlah material dupleks yang dibutuhkan dapat dilihat pada Tabel 1 dibawah ini.

Tabel 1 Kebutuhan Material Dupleks

Periode	Order	Kebutuhan Dupleks (per	Hasil Konversi (Pack)
	(Pieces)	Pieces)	
Januari	900000		2250
Februari	713431		1784
Maret	717345	<u> </u>	1793
April	1714763	<u> </u>	4287
Mei	724000	0,0025 Pack	1810
Juni	663200	<u> </u>	1658
Juli	1212000	<u> </u>	3030
Agustus	915000	<u> </u>	2288
September	330000	<u> </u>	825
Oktober	620000		1550

Nilai Budaya Indigenous Sebagai Pendukung Sustainable Development di Era Industri 4.0. Jakarta, 2 Desember 2021

Metode Lot for Lot

Setelah mengetahui jumlah material dupleks yang dibutuhkan maka selanjutnya kita bisa melakukan simulasi menggunakan metode metode yang sudah kita tentukan tadi. Pertama kita akan menggunakan metode Lot for Lot untuk mensimulasikan perencanaan kebutuhan material dupleks, simulasi metode Lot for Lot dapat dilihat pada Tabel 2 dibawah ini.

Tabel 2 Simulasi MRP Lot For Lot (Duplex Board)

	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Aug	Sep	Oct
Order	2250	1784	1793	4287	1810	1658	3030	2288	825	1550
SR	2356	1784								
PAB	106	106	106	106	106	106	106	107	107	107
POR			1793	4287	1810	1658	3030	2288	825	1550
PORel	1793	4287	1810	1658	3030	2288	825	1550		

Metode *Lot For Lot* adalah metode yang memesan jumlah material sesuai dengan kebutuhan material pada satu periode tertentu [7]. Pada periode januari dibutuhkan *Duplex Board* sebanyak 2250 *Pack* maka jumlah *Duplex Board* yang dipesan pun harus 2250 *Pack*. Pada Tabel diatas jumlah *Duplex Board* yang dipesan untuk periode januari adalah 2356 *Pack* dikarenakan perusahaan memberlakukan sistem safety stock sebesar 10% dari total jumlah pesanan yaitu 107 *Pack. Duplex Board* tersebut harus dipesan dua bulan sebelumnya disebabkan karena *Duplex Board* memiliki lead time sebesar dua bulan, hal ini yang disebut dengan planned order release. Setelah Duplex dipesan dan digunakan maka sisa Duplex disimpan dalam gudang, ini disebut dengan project available balance. Setelah metode *Lot For Lot* selesai disimulasikan maka selanjutnya dilakukan perhitungan biaya. Berikut ini hasil perhitungan biaya dari metode *Lot For Lot* selesai disimulasikan maka selanjutnya dilakukan perhitungan biaya. Berikut ini hasil perhitungan biaya dari metode *Lot For Lot* selesai disimulasikan maka selanjutnya dilakukan perhitungan biaya. Berikut ini hasil perhitungan biaya dari metode *Lot For Lot* yang dapat dilihat pada Tabel 3 dibawah ini.

Tabel 3 Perhitungan Biaya Metode Lot For Lot

Jenis Biaya	Harga	Jumlah	Total
Order Cost	Rp. 1.730.000	10	Rp17.300.000
Inv. Cost per Bulan	Rp. 142	1063	Rp150.953
Total Cost untuk Metod	e Lot For Lot		Rp17.450.953

Biaya untuk sekali pesan material *Duplex Board* adalah Rp. 1.730.000 kemudian berdasarkan simulasi metode *Lot For Lot* maka perusahaan diharuskan untuk melakukan pemesanan sebanyak 10 kali sehingga didapat total harga Rp. 17.300.000 untuk memenuhi semua pesananan. Untuk menyimpan satu *Pack Duplex Board* per bulannya diperlukan biaya Rp. 142, maka untuk menyimpan *Duplex Board* per bulannya yang jika ditotal berjumlah 1063 *Pack* diperlukan biaya Rp. 150.953 sehingga total seluruh biaya dari simulasi *Lot For Lot* adalah Rp. 17.450.963.

Metode Fixed Lot Size

Metode berikutnya yang akan digunakan adalah *Fixed Lot Size*, jumlah *Pack* yang dipesan pada metode ini adalah tetap atau kelipatannya dan tidak bisa diubah ubah dikarenakan sudah ditentukan oleh supplier [8]. Pada studi kasus ini Fixed Lot material Duplex adalah sebesar 2500 *Pack*, berikut ini merupakan simulasi *Fixed Lot Size* yang dapat dilihat pada Tabel 4 dibawah ini.

Nilai Budaya Indigenous Sebagai Pendukung Sustainable Development di Era Industri 4.0. Jakarta, 2 Desember 2021

Tabel 4 Simulasi MRP Fixed Lot Size (Duplex Board)

	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Aug	Sep	Oct
Order	2250	1784	1793	4287	1810	1658	3030	2288	825	1550
SR	2606	2500								
PAB	356	1072	1779	2492	682	1524	994	1207	382	1332
POR			2500	5000		2500	2500	2500		2500
PORel	2500	5000		2500	2500	2500		2500		

Setelah melakukan simulasi pada metode *Fixed Lot Size* maka selanjutnya dilakukan perhitungan biaya untuk metode *Fixed Lot Size*. Rumus perhitungan biaya sama dengan metode *Lot For Lot*, berikut ini merupakan hasil perhitungan biaya dari metode *Fixed Lot Size* yang dapatdilihat pada Tabel 5 dibawah ini.

Tabel 5 Perhitungan Biaya Metode Fixed Lot Size

Jenis Biaya	Harga	Jumlah	Total
Order Cost	Rp. 1.730.000	8	Rp13.840.000
Inv. Cost per Bulan	Rp. 142	11820	Rp1.678.447
Total Cost untuk Metod	le Fixed Lot Size		Rp15.518.447

Metode *Fixed Lot Size* mendapat total biaya sebesar Rp. 15.518.447 dengan jumlah pesananadalah delapan kali pesan dan jumlah material yang disimpan sebanyak 11.820 *Pack*. Biaya total ini lebih murah dibandingkan dengan metode *Lot For Lot*.

Metode Least Unit Cost

Metode selanjutnya yang akan digunakan adalah metode *Least Unit Cost*, dimana pemesanan pada metode ini dilakukan sekaligus sampai pada periode dengan biaya per unit palingrendah [9]. Sebelum melakukan simulasi terlebih dulu harus ditentukan periode dengan biaya perunit paling rendah, oleh karena itu perlu dibuat Tabel bantuan. Tabel bantuan untuk menghitung *Least Unit Cost* dapat dilihat pada Tabel 6 dibawah ini.

Tabel 6. Tabel Bantuan Metode Least Unit Cost

Future	in	Cum.	Carr	Inv.	Order	Inv. Cost	Cum Inv.	Total	Unit
Req.	Period	OQ	Time	Cost/Bulan	Cost		Cost	Cost	Cost
2250	1	2250	0	142	1730000	0	0	1730000	768,9
1784	2	4034	1	142	1730000	253268	253268	1983268	491,7
1793	3	5827	2	142	1730000	509313	762583	2492583	427,8
4287	4	10114	3	142	1730000	1826223	2588806	4318806	427,0
1810	5	11924	4	142	1730000	1028080	3616886	5346886	448,4

Dapat terlihat dari tabel di atas ini biaya per unit dari periode pertama sampai periode keempat terus menurun lalu pada periode kelima biaya per unit kembali naik. Berdasarkan perhitungan ini kita akan melakukan pemesanan sebanyaa jumlah kebutuhan dari periode pertamasampai periode keempat yaitu sebesar 10114 *Pack*. Kemudian untuk periode kelima dan seterusnya kita akan kembali menggunakan Tabel bantuan untuk menemukan biaya per unit palingrendah. Berikut ini perhitungan lanjutan untuk periode lima dan seterusnya yang dapat dilihat pada Tabel 7 dibawah ini.

Nilai Budaya Indigenous Sebagai Pendukung Sustainable Development di Era Industri 4.0. Jakarta, 2 Desember 2021

Tabel 7. Tabel Bantuan Metode LUC

Future	in Perio	d Cum.	Carr	Inv.	Order	Inv. Cost	Cum Inv.	Total Cost	Unit
Req.		OQ	Time	Cost/Bulan	Cost		Cost		Cost
1810	5	1810	0	142	1730000	0	0	1730000	955,8
1658	6	3468	1	142	1730000	235436	235436	1965436	566,7
3030	7	6498	2	142	1730000	860520	1095956	2825956	434,9
2288	8	8786	3	142	1730000	974475	2070431	3800431	432,6
825	9	9611	4	142	1730000	468600	2539031	4269031	444,2

Berdasarkan Tabel 7 dapat diketahui bahwa pada periode kesembilan biaya per unit kembalinaik, oleh karena itu kita akan melakukan pemesanan sebanyak jumlah kebutuhan dari periode kelima sampai kedelapan yaitu 8786 *Pack*. Untuk periode kesembilan dan seterusnya kita akan kembali menggunakan Tabel bantuan yang dapat dilihat pada Tabel 8 dibawah ini.

Tabel 8. Tabel Bantuan Metode LUC

Future	in	Cum.	Carr	Inv.	Order	Inv. Cost	Cum Inv.	Total	Unit
Req.	Period	OQ	Time	Cost/Bulan	Cost		Cost	Cost	Cost
825	9	825	0	142	1730000	0	0	1730000	2097,0
1550	10	2375	1	142	1730000	220100	220100	1950100	821,1

Berdasarkan Tabel 8 dapat diketahui periode kesembilan dan kesepuluh mengalami penurunan biaya per unit, dikarenakan periode telah habis maka kita akan memesan sebanyak jumlah kebutuhan dari periode kesembilan sampai periode kesepuluh. Setelah menghitung menggunakan Tabel bantuan maka selanjutnya dilakukan simulasi pemesanan yang dapat dilihat pada Tabel 9 dibawah ini.

Tabel 9. Simulasi MRP Least Unit Cost (Duplex Board)

						,				
	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Aug	Sep	Oct
Order	2250	1784	1793	4287	1810	1658	3030	2288	825	1550
SR	10220									
PAB	7970	6187	4393	107	7083	5425	2395	107	1657	107
POR					8786				2375	
PORel			8786				2375			

Setelah melakukan simulasi pada metode *Least Unit Cost* maka selanjutnya dilakukan perhitungan biaya. Rumus perhitungan biaya sama dengan metode yang lainnya, berikut ini merupakan hasil perhitungan biaya dari metode *Fixed Lot Size* yang dapat dilihat pada Tabel 10 dibawah ini.

Tabel 10. Perhitungan Biaya Metode Least Unit Cost

Jenis Biaya	Harga	Jumlah	Total
Order Cost	Rp. 1.730.000	3	Rp5.190.000
Inv. Cost per Bulan	Rp. 142	44119	Rp5.031.027
Total Cost	ıntuk Metode <i>Least U</i>	nit Cost	Rp10.221.027

Metode *Least Unit Cost* mendapat total biaya sebesar Rp. 10.221.027 dengan jumlah pesanan adalah dua kali pesan dan jumlah material yang disimpan sebanyak 44.119 *Pack*. Biaya total ini lebih murah dibandingkan dengan dua metode sebelumnya.

Nilai Budaya Indigenous Sebagai Pendukung Sustainable Development di Era Industri 4.0. Jakarta, 2 Desember 2021

Metode Least Total Cost

Metode selanjutnya yang akan digunakan adalah metode *Least Total Cost*, dimana pemesanan pada metode ini didasarkan pada selisih biaya terkecil antara biaya pesan dan biaya simpan [10]. Sebelum dilakukan simulasi maka perlu dilakukan perhitungan untuk mencari selisih terkecil antara biaya pesan dan biaya simpan, oleh karena itu diperlukan Tabel bantuan yang dapat dilihat pada Tabel 11 dibawah ini.

Tabel 11. Tabel Bantuan Metode LTC

Future	in	Cum.	Carr	Inv.	Order	Inv. Cost	Cum Inv.	Total
Req.	Period	OQ	Time	Cost/Bulan	Cost		Cost	Cost
2250	1	2250	0	142	1730000	0	0	1730000
1784	2	4034	1	142	1730000	253268	253268	1476732
1793	3	5827	2	142	1730000	509315	762583	967417
4287	4	10114	3	142	1730000	1826223	2588806	-858806
1810	5	11924	4	142	1730000	1028080	3616886	-1886886

Pada Tabel 11 diketahui bahwa selisih paling kecil antara biaya simpan kumulatif dan biayapesan terdapat di periode keempat, maka kita akan melakukan pemesanan sebanyak jumlah kebutuhan dari periode pertama hingga periode keempat yaitu 10114 *Pack*. Untuk periode kelima dan seterusnya kita akan kembali menggunakan Tabel antuan yang dapat dilihat pada Tabel 12 dibawah ini.

Tabel 12. Tabel Bantuan Metode LTC

Future	in Period	Cum.	Carr	Inv.	Order	Inv. Cost	Cum Inv.	Total
Req.		OQ	Time	Cost/Bulan	Cost		Cost	Cost
1810	5	1810	0	142	1730000	0	0	1730000
1658	6	3468	1	142	1730000	235436	235436	1494564
3030	7	6498	2	142	1730000	860520	1095956	634044
2288	8	8786	3	142	1730000	974475	2070431	-340431
825	9	9611	4	142	1730000	468600	2539031	-809031

Berdasarkan Tabel 12 diketahui bahwa selisih paling kecil terdapat di periode kedelapan yaitu 340.431, maka kita akan melakukan pemesanan sebanyak jumlah total dari periode kelima sampai periode kedelapan yaitu 8786 *Pack*. Untuk periode kesembilan dan seterusnya kita akan kembali menggunakan Tabel bantuan yang dapat dilihat pada Tabel 13 dibawah ini.

Tabel 13. Tabel Bantuan Metode LTC

Future	in	Cum.	Carr	Inv.	Order	Inv. Cost	Cum Inv.	Total
Req.	Period	OQ	Time	Cost/Bulan	Cost		Cost	Cost
825	9	825	0	142	1730000	0	0	1730000
1550	10	2375	1	142	1730000	220100	220100	1509900

Berdasarkan Tabel 13 diketahui selisih paling kecil antara biaya simpan kumulatif dengan biaya pesan terdapat pada periode kesepuluh, maka kita akan memesan sebanyak jumlah total kebutuhan dari periode kesembilan yaitu 2375 *Pack*. Setelah selesai menggunakan Tabel bantuan maka selanjutnya kita akan lakukan simulasi menggunakan metode LTC yang dapat dilihat pada Tabel 14 dibawah ini.

Nilai Budaya Indigenous Sebagai Pendukung Sustainable Development di Era Industri 4.0. Jakarta, 2 Desember 2021

Tabel 14. Simulasi MRP Least Total Cost (Duplex Board)

	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Aug	Sep	Oct
Order	2250	1784	1793	4287	1810	1658	3030	2288	825	1550
SR	10220									
PAB	7970	6186	4393	106	7082	5424	2394	107	1657	107
POR					8786				2375	
PORel			8786				2375			

Setelah melakukan simulasi pada metode *Least Total Cost* maka selanjutnya dilakukan perhitungan biaya. Rumus perhitungan biaya sama dengan metode yang lainnya, berikut ini merupakan hasil perhitungan biaya dari metode *Least Total Cost* yang dapat dilihat pada Tabel 15 dibawah ini.

Tabel 15. Perhitungan Biaya Metode Least Total Cost

Jenis Biaya	Harga	Jumlah	Total
Order Cost	Rp. 1.730.000	3	Rp5.190.000
Inv. Cost per Bulan	Rp. 142	35426	Rp5.030.499
Total Cost u	Rp10.220.499		

Metode *Least Unit Cost* mendapat total biaya sebesar Rp. 10.220.499 dengan jumlah pesanan adalah dua kali pesan dan jumlah material yang disimpan sebanyak 35.426 *Pack*. Biaya total ini lebih mahal dibandingkan dengan *Least Unit Cost*.

Metode Economic Order Quantity

Metode selanjutnya yang akan digunakan adalah metode *Economic Order Quantity*, dimanakita harus menghitung terlebih dahulu jumlah pesanan yang ekonomis menggunakan rumus kemudian melakukan simulasi. Berikut ini merupakan rumus untuk menghitung jumlah pesanan ekonomis yang dapat dilihat pada Gambar 1 dibawah ini [11].

$$EOQ = \sqrt{\frac{2AS}{H}} \tag{1}$$

Maka berdasarkan rumus tersebut kita dapat menghitung EOQ untuk material *Duplex Board*, berikut ini merupakan perhitungan EOQ untuk material *Duplex Board* yang dapat dilihat pada Gambar 2 dibawah ini.

$$EOQ = \sqrt{\frac{2AS}{H}} = \sqrt{\frac{2 \times 25529 \times 1730000}{1800}} = 7005,2 \, Pack \tag{2}$$

Berdasarkan perhitungan rumus diatas didapat jumlah EOQ sebesat 7005,2 *Pack*, selanjutnya kita akan melakukan simulasi dengan menggunakan metode EOQ yang dapat dilihat pada Tabel 16 dibawah ini.

Tabel 16. Simulasi MRP Economic Order Quantity (Duplex Board)

	1 abel 1	Tabel 16. Simulasi MRF Economic Order Quantity (Duplex Board)								
	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Aug	Sep	Oct
Order	2250	1784	1793	4287	1810	1658	3030	2288	825	1550
SR	7111									
PAB	4861	3077	1284	4002	2192	534	4509	2222	1397	6852
POR				7005			7005			7005
PORel	•	•	•					•		

Nilai Budaya Indigenous Sebagai Pendukung Sustainable Development di Era Industri 4.0. Jakarta, 2 Desember 2021

Setelah dilakukan simulasi maka berikutnya kita akan melakukan perhitungan biaya untuk metode EOQ, berikut ini merupakan perhitungan biaya yang dapat dilihat pada Tabel 17 dibawah ini.

Tabel 17. Perhitungan Biaya Metode EOQ

Jenis Biaya	Harga	Jumlah	Total			
Order Cost	Rp. 1.730.000	4	Rp6.920.000			
Inv. Cost per Bulan	Rp. 142	30930	Rp4.392.067			
Total Cost untuk Metode EOQ Rp11.312.067						

Metode EOQ mendapat total biaya sebesar Rp. 11.312.067 dengan jumlah pesanan adalah empat kali pesan dan jumlah material yang disimpan sebanyak 30.930 *Pack*. Biaya total ini lebih mahal dibandingkan dengan *Least Unit Cost* dan *Least Total Cost*

Setelah empat metode disimulasikan maka dapat dibandingkan total biaya masing masing metode sehingga dapat dicari biaya termurah, berikut ini merupakan perbandingan biaya dari metode metode tersebut yang dapat dilihat pada Tabel 18 dibawah ini.

Tabel 18. Perbandingan Biaya antar Metode

LFL	Fixed Lot	LUC	LTC	EOQ
Rp17.450.953	Rp15.518.447	Rp10.221.027	Rp10.220.499	Rp11.312.067

Berdasarkan perbandingan biaya antar metode dapat kita ketahui bahwa metode LUC adalah metode yang menghasilkan biaya paling rendah, dengan demikian metode yang paling tepat untuk melakukan perencanaan material untuk *Duplex Board* adalah metode *Least Unit Cost*. Metode metode ini juga diterapkan untuk perencanaan kebutuhan material yang lainnya sehingga setiap material memiliki metode yang tepat untuk masing masing perencanaannya. Sebelum melakukan perhitungan dan simulasi terdapat beberapa informasi yang perlu diketahui sehingga erhitungan dan simulasi dapat berjalan lancar, berikut ini merupakan informasi yang dibutuhkan untuk melakukan perhitungan yang dapat dilihat pada Tabel 19 dibawah ini.

Tabel 19 Informasi Biava Tiap Material

1 aber 17 informasi Biaya Tiap Material						
	Order Cost	Inventory Cost/Bulan				
Duplex Board 310 GR 610 X 650 mm	Rp. 1.730.000	Rp. 142				
Tinta Diamond Cyan (R)	Rp. 152.000	Rp. 2.201				
Tinta Diamond Magenta	Rp. 158.000	Rp. 2.268				
Tinta Diamond Yellow	Rp. 164.000	Rp. 2.212				
Tinta Diamond ProcessBlack	Rp. 124.000	Rp. 2.305				
Tinta Superstar Orange	Rp. 534.000	Rp. 1.786				
Tinta Superstar Sea Red	Rp. 154.000	Rp. 2.279				
UV Chemical (LapisanTipis)	Rp. 102.000	Rp. 4.612				
Lem Perekat	Rp. 126.000	Rp. 2.279				

Setelah mengetahui semua informasi biaya tiap material maka dapat dilakukan perhitungan dan simulasi untuk setiap material guna menentukan metode perencanaan material yang tepat untuk meminimalkan biaya perencanaan, berikut ini merupakan hasil perhitungan biaya untuk material yang lainnya yang dapat dilihat pada Tabel 20 dibawah ini.

Nilai Budaya Indigenous Sebagai Pendukung Sustainable Development di Era Industri 4.0. Jakarta, 2 Desember 2021

Tabel 20. Perbandingan Total Biaya Material

	Tuoci 20. I ciounamgun Total Blaya Material						
	LFL	Fixed Lot	LUC	LTC	EOQ		
Duplex Board 310	Rp17.300.000	Rp15.518.447	Rp10.221.027	Rp10.220.499	Rp11.312.067		
GR 610 X 650							
mm							
Tinta Diamond	Rp1.548.508	Rp1.387.678	Rp904.899	Rp913.808	Rp889.597		
Cyan(R)							
Tinta Diamond	Rp1.625.360	Rp1.729.688	Rp954.056	Rp857.292	Rp1.044.776		
Magenta							
Tinta Diamond	Rp1.684.240	Rp1.761.660	Rp976.740	Rp945.772	Rp1.189.092		
Yellow			_	_	_		
Tinta Diamond	Rp1.286.100	Rp1.357.555	Rp697.005	Rp697.005	Rp957.470		
Process Black	-	-	-	-	-		
Tinta Superstar	Rp5.375.720	Rp5.588.282	Rp3.475.500	Rp3.314.760	Rp5.575.822		
Orange	•	•	•	•	•		
Tinta Superstar	Rp1.585.580	Rp1.550.088	Rp769.665	Rp828.919	Rp1.039.894		
SeaRed	•	•	•	•	•		
UV Chemical	Rp1.112.240	Rp606.316	Rp457.124	Rp661.124	Rp596.556		
(Lapisan Tipis)	-	•	•	•	•		
Lem Perekat	Rp1.305.580	Rp1.133.345	Rp699.339	Rp699.339	Rp744.919		

Setelah menghitung semua material dengan metode metode yang ada dan mendapat perbandingan biaya maka kita bisa menyimpulkan dan menyarankan metode yang tepat untuk setiap material. Berikut ini merupakan Tabel metode yang tepat untuk setiap material yang dapat dilihat pada Tabel 21 dibawah ini.

Tabel 21. Metode MRP untuk setiap Material

	Saran Metode	Biaya	Biaya (Metode LFL)	Persentase Turun	Jumlah Pemesanan	Jumlah Inventory
Duplex Board 310 GR 610 X 650 mm	LUC	Rp10.221.027	Rp17.300.000	40,92%	2 Kali	44119 Pack
Tinta Diamond Cyan (R)	LUC	Rp904.899	Rp1.548.508	41,5%	3 Kali	204 Kg
Tinta Diamond Magenta	LTC	Rp857.292	Rp1.625.360	47,2%	3 Kali	169 Kg
Tinta Diamond Yellow	LTC	Rp945.772	Rp1.684.240	43,8%	4 Kali	131 Kg
Tinta Diamond Process Black	LUC	Rp697.005	Rp1.286.100	45,8%	3 Kali	141 Kg
Tinta Superstar Orange	LTC	Rp3.314.760	Rp5.375.720	38,3%	4 Kali	660 Kg
Tinta Superstar Sea Red	LUC	Rp769.665	Rp1.585.580	51,4%	3 Kali	135 Kg
UV Chemical (Lapisan Tipis)	LUC	Rp457.124	Rp1.112.240	58,9%	1 Kali	77 Kg
Lem Perekat	LTC	Rp699.339	Rp1.305.580	46,4%	3 Kali	141 Kg

Nilai Budaya Indigenous Sebagai Pendukung Sustainable Development di Era Industri 4.0. Jakarta, 2 Desember 2021

Setelah melakukan perhitungan dengan berbagai metode dan didapatkan biaya yang ekonomis maka diharapkan proses perencanaan material untuk memenuhi permintaan dapat berjalan dengan baik dan efektif sehingga tidak ada biaya yang berlebihan dalam perencanaan material.

KESIMPULAN

Setelah melakukan kerja praktik selama kurang lebih satu bulan pada divisi inventory planning and control di PT. XYZ maka penulis memperoleh beberapa kesimpulan yang dapat diambil. Berikut ini merupakan kesimpulan dari hasil kerja praktik yang penulis lakukan:

- 1. Perencanaan kebutuhan material merupakan kegiatan yang sangat penting karena berhubungan dengan ketepatan jadwal produksi, apabila perencanaan material tidak tepatmaka kegiatan produksi bisa terhambat.
- 2. Terdapat berbagai macam metode untuk merencanakan kebutuhan material diantaranya adalah Lot for Lot, Fixed Lot Size, Least Unit Cost, Least Total Cost, dan Economic Order Quantity
- 3. Perbedaan metode dalam perencanaan kebutuhan material berpengaruh pada total biaya perencanaan, banyaknya unit yang disimpan, dan jumlah pemesanan yang dilakukan
- 4. Metode Lot For Lot yang digunakan PT. XYZ belum mendapatkan biaya yang terendahdalam perencanaan kebutuhan material, metode untuk mendapat biaya terendah pada setiap material dapat dilihat pada Tabel 21.

REFERENSI

- Abdul Kadir & Terra Ch. Triwahyuni. 2013. *Pengenalan Teknologi Informasi*. Yogyakarta.
- Handoko, T.H. 1984. Dasar-dasar Manajemen Produksi & Operasi edisi pertama. Yogyakarta ·BPFE.
- Kusuma, Hendra. 2002. *Manajemen Produksi (Perancangan dan Pengendalian Produksi)*. Yogyakarta: Andi
- Heizer J, dan Render B. 2006. Manajemen Operasi Edisi ketujuh. Jakarta: Salemba Empat.
- Gasperz, V. 2001. *Production Planning and Inventory Control*. Jakarta: PT. Gramedia Pustaka Umum
- Castells, M. 2004. *The Network Society A Cross Cultural Perspective*. Cheltenham, UK, Northampton, MA, USA: Edward Elgar Publishing, Inc.
- Herjanto, Eddy (1999). Manajemen Produksi dan Operasi, PT Gramedia Widiarsana Indonesia, Jakarta.
- Kurniatullah, Irwan, (2015), Perencanaan Produksi untuk Memenuhi Permintaan pada Produk Genteng, Skirpsi Teknik Industri, Program Strata Satu Universitas 17 Agustus 1945, Surabaya.
- Soegihardjo, Oegik. 2000. Studi Kasus Perbandingan antara 'Lot-for-Lot' dan 'Economic Order Quantity' Sebagai Metode Perencanaan Penyediaan Bahan Baku.
- Jurnal Teknik Mesin Vol. 1, No. 2: Universitas Kristen Petra Marendra, Dias. 2021. *Pengertian Material Requirement Planning (MRP) dan Gunanya untuk Bisnis Anda*. www.Hashmicro.com (Diakses pada 10 November 2021, Pukul 19.43 WIB)
- Gie. 2021. Economic Order Quantity (EOQ) Adalah: Berikut Pengertian Lengkapnya. www.accurate.id (Diakses pada 12 November 2021 Pukul 18.47 WIB)