EVALUATING THE PREDICTIVE ACCURACY OF 4-SITE FAT CALIPER MEASUREMENTS TOTAL BODY FAT AND VISCERAL FAT ESTIMATION

Isi Artikel Utama

Zita Atzmardina
Clement Drew
Alexander Halim Santoso
Stanislas Kotska Marvel Mayello Teguh
Yohanes Firmansyah

Abstrak

ABSTRAK


Pendahuluan: Penilaian komposisi tubuh, khususnya lemak total dan visceral, sangat penting dalam menentukan risiko kesehatan. Lemak visceral berhubungan erat dengan masalah metabolik dan penyakit kardiovaskular, tetapi pengukurannya sering memerlukan teknik pencitraan yang mahal seperti CT atau MRI. Metode kaliper lemak 4-titik merupakan alat sederhana dan hemat biaya untuk menilai lemak tubuh total, namun efektivitasnya dalam memprediksi lemak visceral masih belum diketahui. Studi ini membandingkan estimasi metode kaliper 4-titik dengan teknik pencitraan standar emas untuk menilai akurasi prediktifnya. Tujuan penelitian ini adalah mengevaluasi reproduksibilitas pengukuran berbasis kaliper terhadap lemak total dan visceral serta memberikan wawasan tentang penggunaannya dalam konteks klinis dan sumber daya terbatas. Hasil penelitian ini akan membantu praktisi dalam menerapkan teknik yang realistis untuk evaluasi kesehatan yang efektif. Metode: Studi cross-sectional ini dilakukan di Krendang (November 2024) dengan melibatkan 155 orang dewasa (18–60 tahun), dengan pengecualian individu dengan penyakit kronis, kehamilan, atau data yang tidak lengkap. Hasil: Kaliper triseps dan suprailiaka secara signifikan memprediksi lemak total dan subkutan regional (p < 0,001), tetapi tidak lemak visceral (p = 0,777; p = 0,745). Kaliper suprailiaka menunjukkan hubungan marginal dengan lemak lengan (p = 0,050). Hasil ini mendukung penggunaan pengukuran lipatan kulit sebagai alat yang andal untuk estimasi lemak subkutan. Kesimpulan: Kaliper triseps dan suprailiaka secara akurat memprediksi lemak subkutan tetapi tidak lemak visceral. Temuan ini menyoroti manfaatnya dalam pengaturan dengan sumber daya terbatas untuk memantau distribusi lemak, sekaligus menekankan perlunya pencitraan canggih untuk penilaian lemak visceral yang lebih akurat.


 


ABSTRACT


Introduction: Assessing body composition, particularly total and visceral fat, is critical for determining health risks. Visceral fat is highly associated with metabolic problems and cardiovascular diseases, but measuring it often necessitates the use of costly imaging techniques such as CT or MRI. The 4-site fat caliper method, a simple and cost-effective tool for assessing total body fat, is extensively used, although its effectiveness in predicting visceral fat is unknown. This study compares the 4-site fat caliper method's estimates to gold-standard imaging techniques to assess their predictive accuracy. The study's goal is to assess the reproducibility of caliper-derived measurements for total and visceral fat, as well as to provide insights into their use in clinical and resource-limited contexts. These findings will assist practitioners in implementing realistic techniques for conducting effective health evaluations. Methods: This cross-sectional study, conducted in Krendang (November 2024), involved 155 adults (18–60 years), excluding those with chronic conditions, pregnancy, or incomplete data. Results: Tricep and suprailiac fat calipers significantly predicted total and regional subcutaneous fat (p < 0.001) but not visceral fat (p = 0.777; p = 0.745, respectively). Suprailiac calipers showed marginal association with arm fat (p = 0.050). These findings support skinfold measurements as reliable tools for subcutaneous fat estimation. Conclusion: Tricep and suprailiac fat calipers reliably predict subcutaneous fat but not visceral fat. These findings highlight their utility in resource-limited settings for monitoring fat distribution, while emphasizing the need for advanced imaging to assess visceral fat accurately.

Rincian Artikel

Bagian
Articles

Referensi

Aini, C. N., & Ardiaria, M. (2022). the Relationship between A Skinfold Thicknesses with Level of High Sensitivity C-Reactive Protein in Elderly Woman. Sports Medicine Curiosity Journal, 1(1), 1–6. https://doi.org/10.15294/smcj.v1i1.58509

Blüher, M. (2020). Metabolically Healthy Obesity. Endocrine Reviews, 41(3), 405–420. https://doi.org/10.1210/ENDREV/BNAA004

Chen, C. H., Chen, Y. Y., Chuang, C. L., Chiang, L. M., Chiao, S. M., & Hsieh, K. C. (2014). The study of anthropometric estimates in the visceral fat of healthy individuals. Nutrition Journal, 13(1), 46. https://doi.org/10.1186/1475-2891-13-46

Cui, B., Li, W., Wang, G., Li, P., Zhu, L., & Zhu, S. (2022). The predictive value of trunk/leg fat ratio for type 2 diabetes mellitus remission after bariatric surgery: A new observation and insight. Frontiers in Endocrinology, 13, 1068917. https://doi.org/10.3389/FENDO.2022.1068917/BIBTEX

Damayanti, R. E., Sumarmi, S., & Mundiastuti, L. (2019). Hubungan Durasi Tidur dengan Kejadian Overweight dan Obesitas pada Tenaga Kependidikan di Lingkungan Kampus C Universitas Airlangga The Association between Sleep Duration with Overweight and Obesity Among Education Staff in Campus C of Universitas Airlangga. 89–93. https://doi.org/10.2473/amnt.v3i2.2019.89-93

Demura, S. I., & Sato, S. (2007). Suprailiac or abdominal skinfold thickness measured with a skinfold caliper as a predictor of body density in Japanese adults. Tohoku Journal of Experimental Medicine, 213(1), 51–61. https://doi.org/10.1620/tjem.213.51

Després, J. P. (2007). Cardiovascular disease under the influence of excess visceral fat. Critical Pathways in Cardiology, 6(2), 51–59. https://doi.org/10.1097/HPC.0B013E318057D4C9

Després, J. P., Lemieux, I., Bergeron, J., Pibarot, P., Mathieu, P., Larose, E., Rodés-Cabau, J., Bertrand, O. F., & Poirier, P. (2008). Abdominal Obesity and the Metabolic Syndrome: Contribution to global cardiometabolic risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(6), 1039–1049. https://doi.org/10.1161/ATVBAHA.107.159228/ASSET/C395EACD-E0E5-45C7-89EF-ADE6968FC18C/ASSETS/GRAPHIC/6FF6.JPEG

Duren, D. L., Sherwood, R. J., Czerwinski, S. A., Lee, M., Choh, A. C., Siervogel, R. M., & Chumlea, W. C. (2008). Body Composition Methods: Comparisons and Interpretation. Journal of Diabetes Science and Technology (Online), 2(6), 1139. https://doi.org/10.1177/193229680800200623

Ferreira, I., Snijder, M. B., Twisk, J. W. R., Van Mechelen, W., Kemper, H. C. G., Seidell, J. C., & Stehouwer, C. D. A. (2004). Central Fat Mass Versus Peripheral Fat and Lean Mass: Opposite (Adverse Versus Favorable) Associations with Arterial Stiffness? The Amsterdam Growth and Health Longitudinal Study. The Journal of Clinical Endocrinology & Metabolism, 89(6), 2632–2639. https://doi.org/10.1210/JC.2003-031619

Fox, C. S., Massaro, J. M., Hoffmann, U., Pou, K. M., Maurovich-Horvat, P., Liu, C. Y., Vasan, R. S., Murabito, J. M., Meigs, J. B., Cupples, L. A., D’Agostino, R. B., & O’Donnell, C. J. (2007). Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the framingham heart study. Circulation, 116(1), 39–48. https://doi.org/10.1161/CIRCULATIONAHA.106.675355/SUPPL_FILE/CI264541DSTABLE.PDF

Frank, A. P., De Souza Santos, R., Palmer, B. F., & Clegg, D. J. (2018). Determinants of body fat distribution in humans may provide insight about obesity-related health risks. Journal of Lipid Research, 60(10), 1710. https://doi.org/10.1194/JLR.R086975

González Jiménez, E. (2013). Body composition: Assessment and clinical value. Endocrinología y Nutrición (English Edition), 60(2), 69–75. https://doi.org/10.1016/J.ENDOEN.2012.04.015

Hoffmann, J., Thiele, J., Kwast, S., Borger, M. A., Schröter, T., Falz, R., & Busse, M. (2022). Measurement of subcutaneous fat tissue: reliability and comparison of caliper and ultrasound via systematic body mapping. Scientific Reports 2022 12:1, 12(1), 1–11. https://doi.org/10.1038/s41598-022-19937-4

Janochova, K., Haluzik, M., & Buzga, M. (2019). Visceral fat and insulin resistance – what we know? Biomedical Papers, 163(1), 19–27. https://doi.org/10.5507/bp.2018.062

Jensen, M. D. (2008). Role of Body Fat Distribution and the Metabolic Complications of Obesity. The Journal of Clinical Endocrinology and Metabolism, 93(11 Suppl 1), S57. https://doi.org/10.1210/JC.2008-1585

Kwon, H., Kim, D., & Kim, J. S. (2017). Body Fat Distribution and the Risk of Incident Metabolic Syndrome: A Longitudinal Cohort Study. Scientific Reports 2017 7:1, 7(1), 1–8. https://doi.org/10.1038/s41598-017-09723-y

Lewandowski, Z. ;, Dychała, E. ;, Pisula-Lewandowska, A. ;, Danel, D. P., Kelly, K. M., Tchounwou, P. B., Lewandowski, Z., Dychała, E., Pisula-Lewandowska, A., & Danel, D. P. (2022). Comparison of Skinfold Thickness Measured by Caliper and Ultrasound Scanner in Normative Weight Women. International Journal of Environmental Research and Public Health, 19(23), 16230. https://doi.org/10.3390/IJERPH192316230

Liu, C., Cheng, K. Y. K., Tong, X., Cheung, W. H., Chow, S. K. H., Law, S. W., & Wong, R. M. Y. (2023). The role of obesity in sarcopenia and the optimal body composition to prevent against sarcopenia and obesity. Frontiers in Endocrinology, 14, 1077255. https://doi.org/10.3389/FENDO.2023.1077255/BIBTEX

Ma, W., Zhu, H., Yu, X., Zhai, X., Li, S., Huang, N., Liu, K., Shirai, K., Sheerah, H. A., & Cao, J. (2023). Association between android fat mass, gynoid fat mass and cardiovascular and all-cause mortality in adults: NHANES 2003–2007. Frontiers in Cardiovascular Medicine, 10, 1055223. https://doi.org/10.3389/FCVM.2023.1055223

Maher, J. J. (2010). Trunk Fat as a Determinant of Liver Disease. Gastroenterology, 138(4), 1244. https://doi.org/10.1053/J.GASTRO.2010.02.031

Minetto, M. A., Busso, C., Lalli, P., Gamerro, G., & Massazza, G. (2021). DXA-Derived Adiposity and Lean Indices for Management of Cardiometabolic and Musculoskeletal Frailty: Data Interpretation Tricks and Reporting Tips. Frontiers in Rehabilitation Sciences, 2, 712977. https://doi.org/10.3389/FRESC.2021.712977/BIBTEX

Neeland, I. J., Ayers, C. R., Rohatgi, A. K., Turer, A. T., Berry, J. D., Das, S. R., Vega, G. L., Khera, A., McGuire, D. K., Grundy, S. M., & De Lemos, J. A. (2013). Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity (Silver Spring, Md.), 21(9), E439. https://doi.org/10.1002/OBY.20135

Olutekunbi, O. A., Solarin, A. U., Senbanjo, I. O., Disu, E. A., & Njokanma, O. F. (2018). Skinfold Thickness Measurement in Term Nigerian Neonates: Establishing Reference Values. International Journal of Pediatrics, 2018, 3624548. https://doi.org/10.1155/2018/3624548

Orphanidou, C., McCargar, L., Birmingham, C. L., Mathieson, J., & Goldner, E. (1994). Accuracy of subcutaneous fat measurement: Comparison of skinfold calipers, ultrasound, and computed tomography. Journal of the American Dietetic Association, 94(8), 855–858. https://doi.org/10.1016/0002-8223(94)92363-9/ASSET/CE38D0B3-2883-4326-AA7A-E7ED2ADA2FD4/MAIN.ASSETS/GR1.SML

Pescatori, L. C., Savarino, E., Mauri, G., Silvestri, E., Cariati, M., Sardanelli, F., & Sconfienza, L. M. (2019). Quantification of visceral adipose tissue by computed tomography and magnetic resonance imaging: reproducibility and accuracy. Radiologia Brasileira, 52(1), 1–6. https://doi.org/10.1590/0100-3984.2017.0211

Porter, S. A., Massaro, J. M., Hoffmann, U., Vasan, R. S., O’Donnel, C. J., & Fox, C. S. (2009). Abdominal Subcutaneous Adipose Tissue: A Protective Fat Depot? Diabetes Care, 32(6), 1068. https://doi.org/10.2337/DC08-2280

Rios-Escalante, C., Albán-Fernández, S., Espinoza-Rojas, R., Saavedra-Garcia, L., Barengo, N. C., & Guerra Valencia, J. (2023a). Diagnostic Performance of the Measurement of Skinfold Thickness for Abdominal and Overall Obesity in the Peruvian Population: A 5-Year Cohort Analysis. International Journal of Environmental Research and Public Health, 20(23), 7089. https://doi.org/10.3390/IJERPH20237089

Rios-Escalante, C., Albán-Fernández, S., Espinoza-Rojas, R., Saavedra-Garcia, L., Barengo, N. C., & Guerra Valencia, J. (2023b). Diagnostic Performance of the Measurement of Skinfold Thickness for Abdominal and Overall Obesity in the Peruvian Population: A 5-Year Cohort Analysis. International Journal of Environmental Research and Public Health 2023, Vol. 20, Page 7089, 20(23), 7089. https://doi.org/10.3390/IJERPH20237089

Rochlani, Y., Pothineni, N. V., Kovelamudi, S., & Mehta, J. L. (2017). Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Therapeutic Advances in Cardiovascular Disease, 11(8), 215. https://doi.org/10.1177/1753944717711379

Ryo, M., Kishida, K., Nakamura, T., Yoshizumi, T., Funahashi, T., Shimomura Miwa Ryo, I., Yoshi-zumi, T., & Shimomura, I. (2014). Clinical significance of visceral adiposity assessed by computed tomography: A Japanese perspective. World Journal of Radiology, 6(7), 409. https://doi.org/10.4329/WJR.V6.I7.409

Sánchez-López, M., Ortega, F. B., Moya-Martínez, P., López-Martínez, S., Ortiz-Galeano, I., Gómez-Marcos, M. A., Sjöström, M., & Martínez-Vizcaíno, V. (2013). Leg fat might be more protective than arm fat in relation to lipid profile. European Journal of Nutrition, 52(2), 489–495. https://doi.org/10.1007/S00394-012-0350-4

Sénéchal, M., Swift, D. L., Johannsen, N. M., Blair, S. N., Earnest, C. P., Lavie, C. J., & Church, T. S. (2013). Changes in Body Fat Distribution and Fitness Are Associated With Changes in Hemoglobin A1c After 9 Months of Exercise Training: Results from the HART-D study. Diabetes Care, 36(9), 2843. https://doi.org/10.2337/DC12-2428

Shah, U. A., Ballinger, T. J., Bhandari, R., Dieli-Cornwright, C. M., Guertin, K. A., Hibler, E. A., Kalam, F., Lohmann, A. E., & Ippolito, J. E. (2023). Imaging modalities for measuring body composition in patients with cancer: opportunities and challenges. Journal of the National Cancer Institute. Monographs, 2023(61), 56. https://doi.org/10.1093/JNCIMONOGRAPHS/LGAD001

Shah, R. V., Murthy, V. L., Abbasi, S. A., Blankstein, R., Kwong, R. Y., Goldfine, A. B., Jerosch-Herold, M., Lima, J. A. C., Ding, J., & Allison, M. A. (2014a). Visceral adiposity and the risk of metabolic syndrome across body mass index: The MESA study. JACC: Cardiovascular Imaging, 7(12), 1221–1235. https://doi.org/10.1016/J.JCMG.2014.07.017/SUPPL_FILE/MMC1.DOCX

Shah, R. V., Murthy, V. L., Abbasi, S. A., Blankstein, R., Kwong, R. Y., Goldfine, A. B., Jerosch-Herold, M., Lima, J. A. C., Ding, J., & Allison, M. A. (2014b). Visceral Adiposity and the Risk of Metabolic Syndrome Across Body Mass Index: The MESA Study. JACC. Cardiovascular Imaging, 7(12), 1221. https://doi.org/10.1016/J.JCMG.2014.07.017

Sniderman, A. D., Bhopal, R., Prabhakaran, D., Sarrafzadegan, N., & Tchernof, A. (2007). Why might South Asians be so susceptible to central obesity and its atherogenic consequences? The adipose tissue overflow hypothesis. International Journal of Epidemiology, 36(1), 220–225. https://doi.org/10.1093/IJE/DYL245

Sukkriang, N., Chanprasertpinyo, W., Wattanapisit, A., Punsawad, C., Thamrongrat, N., & Sangpoom, S. (2021). Correlation of body visceral fat rating with serum lipid profile and fasting blood sugar in obese adults using a noninvasive machine. Heliyon, 7(2), e06264. https://doi.org/10.1016/J.HELIYON.2021.E06264

Swarup, S., Ahmed, I., Grigorova, Y., & Zeltser, R. (2024). Metabolic Syndrome. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK459248/

Wang, H., Chen, Y. E., & Eitzman, D. T. (2014). Imaging body fat techniques and cardiometabolic implications. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(10), 2217–2223. https://doi.org/10.1161/ATVBAHA.114.303036

Zhang, X., Hu, E. A., Wu, H., Malik, V., & Sun, Q. (2013). Associations of Leg Fat Accumulation with Adiposity-Related Biological Factors and Risk of Metabolic Syndrome. Obesity (Silver Spring, Md.), 21(4), 824. https://doi.org/10.1002/OBY.20028