CORRELATION OF SIMPLE ANTHROPOMETRY AND BODY COMPOSITION WITH HANDGRIP STRENGTH IN OLDER ADULTS: CROSS-SECTIONAL STUDY
Isi Artikel Utama
Abstrak
Latar Belakang: Kekuatan genggam tangan (Handgrip Strength/HGS) merupakan indikator kesehatan fisik secara umum pada lansia. HGS mencerminkan keseimbangan antara massa otot dan lemak serta membantu dalam diagnosis sarkopenia. Memahami hubungan antara ukuran antropometri, komposisi tubuh, dan HGS penting untuk mengatasi penurunan kesehatan otot akibat penuaan. Tujuan: Studi ini mengevaluasi korelasi antara parameter antropometri sederhana, komposisi tubuh, dan HGS pada lansia, guna mendukung deteksi dan intervensi dini sarkopenia. Metode: Studi potong lintang dilakukan pada 31 lansia (≥60 tahun) di Panti Wreda Santa Anna tahun 2024. Pengukuran antropometri mencakup lingkar pinggang, pinggul, betis, leher, dan lengan atas. Komposisi tubuh seperti distribusi lemak dan otot rangka dianalisis menggunakan Omron Karada Scan HBF 375. HGS diukur dengan dinamometer terkalibrasi. Uji korelasi Spearman’s Rho digunakan dengan signifikansi p<0,05. Hasil: Terdapat korelasi signifikan antara HGS dan beberapa parameter, terutama berat badan, tinggi badan, lingkar betis, lemak viseral, dan indeks otot rangka. Otot rangka tungkai menunjukkan korelasi kuat dengan HGS (r=0,653; p<0,001). Hasil ini menegaskan keterkaitan antara kesehatan otot, komposisi tubuh, dan perubahan terkait usia. Kesimpulan: HGS, yang dipengaruhi oleh parameter antropometri dan komposisi tubuh, merupakan indikator yang andal untuk sarkopenia pada lansia. Intervensi yang menargetkan faktor-faktor ini dapat meningkatkan fungsi otot dan kualitas hidup lansia.
Rincian Artikel

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Jurnal Muara Ilmu Ekonomi dan Bisnis Creative Commons Attribution-ShareAlike 4.0 International License.Referensi
Bian, A., Ma, Y., Zhou, X., Guo, Y., Wang, W., Zhang, Y., & Wang, X. (2020). Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskeletal Disorders, 21(1), 214. https://doi.org/10.1186/s12891-020-03236-y
Boaru, S. G., Borkham-Kamphorst, E., Van de Leur, E., Lehnen, E., Liedtke, C., & Weiskirchen, R. (2015). NLRP3 inflammasome expression is driven by NF-κB in cultured hepatocytes. Biochemical and Biophysical Research Communications, 458(3), 700–706. https://doi.org/10.1016/j.bbrc.2015.02.029
Cho, M.-R., Lee, S., & Song, S.-K. (2022). A Review of Sarcopenia Pathophysiology, Diagnosis, Treatment and Future Direction. Journal of Korean Medical Science, 37(18). https://doi.org/10.3346/jkms.2022.37.e146
Cruz-Jentoft, A. J., & Sayer, A. A. (2019). Sarcopenia. The Lancet, 393(10191), 2636–2646. https://doi.org/10.1016/S0140-6736(19)31138-9
Ferri, E., Marzetti, E., Calvani, R., Picca, A., Cesari, M., & Arosio, B. (2020). Role of Age-Related Mitochondrial Dysfunction in Sarcopenia. International Journal of Molecular Sciences, 21(15), 5236. https://doi.org/10.3390/ijms21155236
Frisca Frisca, Santoso, A. H., Warsito, J. H., Syarifah, A. G., Gunaidi, F. C., Destra, E., & Firmansyah, Y. (2024). Edukasi Dan Penilaian Kadar Albumin Pada Kelompok Lanjut Usia Dalam Pencegahan Sarkopenia. SEWAGATI: Jurnal Pengabdian Masyarakat Indonesia, 3(2), 91–99. https://doi.org/10.56910/sewagati.v3i2.1524
Jimenez-Gutierrez, G. E., Martínez-Gómez, L. E., Martínez-Armenta, C., Pineda, C., Martínez-Nava, G. A., & Lopez-Reyes, A. (2022). Molecular Mechanisms of Inflammation in Sarcopenia: Diagnosis and Therapeutic Update. Cells, 11(15), 2359. https://doi.org/10.3390/cells11152359
Lee, S. H., & Gong, H. S. (2020). Measurement and Interpretation of Handgrip Strength for Research on Sarcopenia and Osteoporosis. Journal of Bone Metabolism, 27(2), 85. https://doi.org/10.11005/jbm.2020.27.2.85
Maranhao Neto, G. A., Oliveira, A. J., Pedreiro, R. C. de M., Pereira-Junior, P. P., Machado, S., Marques Neto, S., & Farinatti, P. T. V. (2017). Normalizing handgrip strength in older adults: An allometric approach. Archives of Gerontology and Geriatrics, 70, 230–234. https://doi.org/10.1016/j.archger.2017.02.007
McGrath, R. (2019). Comparing absolute handgrip strength and handgrip strength normalized to body weight in aging adults. Aging Clinical and Experimental Research, 31(12), 1851–1853. https://doi.org/10.1007/s40520-019-01126-5
NEVILL, A. M., TOMKINSON, G. R., LANG, J. J., WUTZ, W., & MYERS, T. D. (2022). How Should Adult Handgrip Strength Be Normalized? Allometry Reveals New Insights and Associated Reference Curves. Medicine & Science in Sports & Exercise, 54(1), 162–168. https://doi.org/10.1249/MSS.0000000000002771
Riviati, N., & Indra, B. (2023). Relationship between muscle mass and muscle strength with physical performance in older adults: A systematic review. SAGE Open Medicine, 11. https://doi.org/10.1177/20503121231214650
Silva, N. de A., Pedraza, D. F., & Menezes, T. N. de. (2015). Desempenho funcional e sua associação com variáveis antropométricas e de composição corporal em idosos. Ciência & Saúde Coletiva, 20(12), 3723–3732. https://doi.org/10.1590/1413-812320152012.01822015
Trombetti, A., Reid, K. F., Hars, M., Herrmann, F. R., Pasha, E., Phillips, E. M., & Fielding, R. A. (2016). Age-associated declines in muscle mass, strength, power, and physical performance: impact on fear of falling and quality of life. Osteoporosis International, 27(2), 463–471. https://doi.org/10.1007/s00198-015-3236-5
van Nieuwpoort, I. C., Vlot, M. C., Schaap, L. A., Lips, P., & Drent, M. L. (2018). The relationship between serum IGF-1, handgrip strength, physical performance and falls in elderly men and women. European Journal of Endocrinology, 179(2), 73–84. https://doi.org/10.1530/EJE-18-0076
Wiedmer, P., Jung, T., Castro, J. P., Pomatto, L. C. D., Sun, P. Y., Davies, K. J. A., & Grune, T. (2021). Sarcopenia – Molecular mechanisms and open questions. Ageing Research Reviews, 65, 101200. https://doi.org/10.1016/j.arr.2020.101200
Yoo, J.-I., Choi, H., & Ha, Y.-C. (2017). Mean Hand Grip Strength and Cut-off Value for Sarcopenia in Korean Adults Using KNHANES VI. Journal of Korean Medical Science, 32(5), 868. https://doi.org/10.3346/jkms.2017.32.5.868
Yuan, S., & Larsson, S. C. (2023). Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism, 144, 155533. https://doi.org/10.1016/j.metabol.2023.155533
Zhang, X., Li, H., He, M., Wang, J., Wu, Y., & Li, Y. (2022). Immune system and sarcopenia: Presented relationship and future perspective. Experimental Gerontology, 164, 111823. https://doi.org/10.1016/j.exger.2022.111823
Zhong, F., Liang, S., & Zhong, Z. (2019). Emerging Role of Mitochondrial DNA as a Major Driver of Inflammation and Disease Progression. Trends in Immunology, 40(12), 1120–1133. https://doi.org/10.1016/j.it.2019.10.008