PERBANDINGAN KLASIFIKASI KACANG KERING DENGAN ALGORITMA KNN DAN SVM LINEAR
Main Article Content
Abstract
Advancements in technology have led to the creation of new types of beans, making their classification more difficult. However, the classification of dry beans can be simplified using machine learning algorithms such as Support Vector Machine and K-Nearest Neighbor. The objective of this study was to identify and differentiate types of beans and determine the algorithms that yield the best accuracy, precision, recall, and f1-score. The dataset used for this research was obtained from the Kaggle website and consists of 16 features and 1 class for classification. The findings reveal that the K-Nearest Neighbor algorithm outperformed the Support Vector Machine algorithm in terms of classification accuracy, regardless of the division between training and test data. Thus, K-Nearest Neighbor provides better results for the classification of beans in this study.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Menawarkan akses terbukaReferences
[1] R. R. Sani, Y. A. Pratiwi, S. Winarna, E. D. Udayanti and F. A. Zami, "Analisis Perbandingan Algoritma Naive Bayes Classifier dan Support Vector Machine untuk Klasifikasi Hoax Pada Berita Online Indonesia," Jurnal Masyarakat Informatika, vol. 13, pp. 85-98, 2022.
[2] M. E. Al Rivan, N. Rachmat and M. R. Ayustin, "Klasifikasi Jenis Kacang-Kacangan Berdasarkan Tekstur Menggunakan Jaringan Syaraf Tiruan," Jurnal Komputer Terapan, vol. 6 (1), pp. 89-98, 1 mei 2020.
[3] J. A. Wiesinger, K. A. Cichy, D. S. Hooper, J. J. Hart and R. P. Glahn, "Processing White or yellow dry beans (Phaseolus vulgaris L.) into a heat treated flour enhances the iron bioavailability of bean-based pastas," Journal of Functional Foods, vol. 71, August 2020.
[4] N. Diniyah and S. H. Lee, "Komposisi Senyawa Fenol dan Potensi Antioksidan dari Kacang-Kacangan," Jurnal Agroteknologi, vol. 14 (01), pp. 91-102, 15 September 2020.
[5] M. A. Uebersax, A. K. Cichy, E. F. Gomez, G. T. Porch, J. Heitholt, M. J. Osorno , K. Kamfwa, s. S. Snapp and S. Bales, "Dry Beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security," Legume Science, vol. 5.1, p. e155, 30 May 2022.
[6] H. G. Dogan, M. Kan and A. Kan, "Projection of Dry Beans Cultivation Area For Turkey," Journal of Global Innovations, vol. 8(4), pp. 195-201, 2020.
[7] A. P. Mullins and B. H. Arjmandi, "Health Benefits of Plant-Based Nutrition : Focus on Beans Cardiometabolic disease," Nutrients, vol. 13.2, p. 519, 5 Febuary 2021.
[8] T. Lin, O. S. Keefe, S. Duncan and F. C. Fraguas, "Retention of primary bile salts by dry beans (Phaselous vulgaris L.) duringin vitro digestion : Role of bean components and effect of food processing," Food Research International, vol. 137, no. 109337, November 2020.
[9] W. Wang, E. M. Wright, M. A. Uebersax and K. Cichy , "A pilot-scale dry bean canning and evaluation protocol," Journal of Food Processing and Preservation, vol. 49, no. 9, 24 November 2021.
[10] E. Elfatimi, R. Erygit and L. Elfatimi, "Beans Leaf Disease Classification Using Mobilenet Models," IEEE Acess 10, vol. 10, pp. 9471-9482, 13 January 2022.
[11] A. R. Isnain, J. Supriyanto and M. P. Kharisma, "Implementation of K-Nearest Neighbor (K-NN) Algorithm For Public Sentiment Analysis of Online Learning," Indonesian Journal of Computing and Cybermetics System, vol. 15(2), pp. 121-130, April 2021.
[12] S. R. Cholil, T. Handayani, R. Prathivi and T. Ardianita, "Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) untuk Klasifikasi Seleksi Penerima Beasiswa," Indonesian Journal on Computer and Information Technology, vol. 6 (2), pp. 118-127, 13 juli 2021.
[13] S. Rahayu, Y. MZ, J. E. Bororing and R. Hadiyat, "Implementasi Metode K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP," Jurnal Pendidikan Informatika Edumatic, vol. 6 no 1, pp. 98-106, 1 Juni 2022.
[14] A. Setianingrum, A. Hindayanti, D. M. Cahya and D. S. Purnia, "Perbandingan Metode Algoritma K-NN & Metode Algoritma C4.5 Pada Analisa Kredit Macet (Studi Kasus PT Tungmung Textile Bintan)," Evolusi : Jurnal Sains dan Manajemen, vol. 9 No 2, 2 September 2021.
[15] S. S. Fadli and M. Ashari, "Optimization of Support Vector Machine Method Using Feature Selection to Improve Classification Result," JISA (Jurnal Informatika dan Sains), vol. 04 no 1, pp. 22-27, 1 June 2021.
[16] F. P. Anindya, D. E. Herwindiati and N. J. Perdana, "Pengenalan Suara Manusia Menggunakan Support Vector Classifier (SVC) Untuk Proses Otentikasi," Computatio: Journal of Computer Science and Information System, vol. 7.1, pp. 28-36, 2023.
[17] D. Krstinic, M. Braovic, L. Seric and D. B. Stulic, "Multi-Label classifier performance evaluation with confusion matix," Computer Science & Information Technology, vol. 1, pp. 1-14, 2020.
[18] Z. D. Vunjovic, "Classification Model Evaluation Metrics," (IJACSA) International Journal of Advanced Computer Science and Application, vol. 12, no. 6, pp. 599-606, 2021.
[19] A. Roihan, P. A. Sunarya and A. S. Rafika, "Pemanfaatan Machine Learning dalam Berbagai Bidang," IJICT (Indonesian Journal on Computer and Information Technology), vol. 5 (1), pp. 75-82, 22 April 2020.
[20] P. Santoso, H. Abijono and N. L. Angggreini, "Algoritma Supervised Learning Dan Unsupervised Learning Dalam Pengolahan Data," G-Tech: (Jurnal Teknologi Terapan), vol. 4 No 2, pp. 315-318, April 2021.

